Continuum Quantum Field Theory for Fractons

Shu-Heng Shao Institute for Advanced Study

Seiberg-SHS, arXiv: 2003.10466, 2004.00015, 2004.06115

Common Lore

- Starting at short distances with some lattice model with local interactions, there is an effective quantum field theory (QFT) description at low energy/long distances.
- A more limited version: Every gapped phase of matter can be described by a topological quantum field theory (TQFT) at low energy.
- TQFT has been studied extensively by both physicists and mathematicians. It captures the universal behaviors of these gapped topological phases.

1

Challenge to the Common Lore

- Fractons [...Haah 2011...] : a large class of lattice spin models exhibiting peculiar features.
- Do **not** seem to admit a standard continuum field theory limit.
- In particular, the gapped fracton phases do **not** seem to admit a TQFT description at low energy.

Introduction

- We will extend the framework of QFT to incorporate these systems.
- This talk will center around the X-cube model [Vijay, Haah, Fu 2016], one of the most celebrated gapped fracton models, and its related systems.
- We will restrict ourselves to (3+1)-dimensional flat spacetime.
- Our QFTs are not topological, but they have quasi-topological defects and operators.

What is the X-cube model?

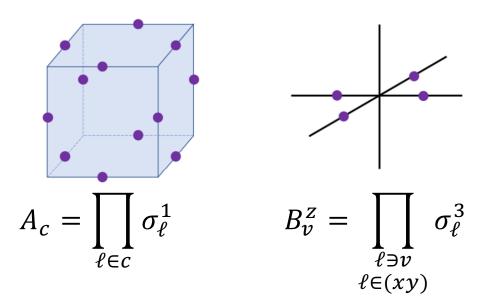
X-cube Model [Vijay, Haah, Fu 2016]

Figures taken from Pretko-Chen-You 2020

- 3d cubic lattice
- 2-dimensional Hilbert space at each link
- Pauli operators at each link ℓ

$$\begin{split} \sigma_\ell^1 \sigma_\ell^3 &= -\sigma_\ell^3 \sigma_\ell^1 \\ \sigma_\ell^1 \sigma_\ell^1 &= \sigma_\ell^3 \sigma_\ell^3 = 1 \end{split}$$

 All the terms in the Hamiltonian commute with each others



$$H = -\sum_{c} A_{c} - \sum_{v} (B_{v}^{x} + B_{v}^{y} + B_{v}^{z})$$

5

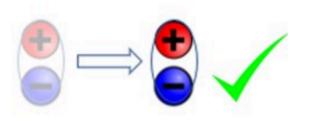
Peculiarities of the X-cube Model

- Number of ground states grows exponentially in the linear size L^x, L^y, L^z of the system (assuming periodic boundary condition). ground state degeneracy = $2^{2L^x+2L^y+2L^z-3}$ It becomes infinite in the continuum limit $L^i \to \infty$.
- The ground state degeneracy is robust: small deformations by local operators cannot lift the degeneracy in perturbation theory.
- Excitations have restricted mobility.

Restricted Mobility

a single fracton cannot move

b)



but two of them can move together

Seems impossible to be described by QFT???

Figures taken from Pretko-Chen-You 2020

7

As a warm up, consider a more familiar example:

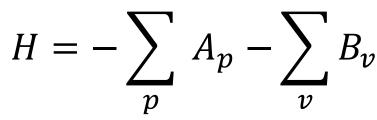
Toric Code

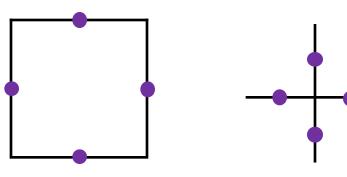
Toric Code [Kitaev 1997]

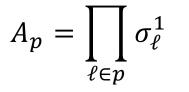
- 2d square lattice
- 2-dimensional Hilbert space at each link
- Pauli operators at each link ℓ

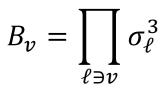
$$\sigma_{\ell}^{1}\sigma_{\ell}^{3} = -\sigma_{\ell}^{3}\sigma_{\ell}^{1}$$
$$\sigma_{\ell}^{1}\sigma_{\ell}^{1} = \sigma_{\ell}^{3}\sigma_{\ell}^{3} = 1$$

 All the terms in the Hamiltonian commute with each others









Lattice model	(2+1)d Toric code	(3+1)d X-cube model
Lattice interaction		
Ground states	2 ²	$2^{2L^{\chi}+2L^{\gamma}+2L^{z}-3}$
Excitations	Anyons	Fractons, Lineons
	\mathbb{Z}_2 gauge theory	
Low energy QFT	$\frac{2}{2\pi} \ \hat{a} \wedge da$???

Lattice model	(2+1)d Toric code	(3+1)d X-cube model
Lattice interaction		
Ground states	2 ²	$2^{2L^{x}+2L^{y}+2L^{z}-3}$
Excitations	Anyons	Fractons, Lineons
	\mathbb{Z}_2 gauge theory	\mathbb{Z}_2 tensor gauge theory
Low energy QFT	$\frac{2}{2\pi} \ \hat{a} \wedge da$	$\frac{2}{2\pi} \left(\hat{A}_0 B + \hat{A} E \right)$

Lattice model	(2+1)d Toric code	(3+1)d X-cube model
Lattice interaction		
Ground states	2 ²	$2^{2L^{x}+2L^{y}+2L^{z}-3}$
Excitations	Anyons	Fractons, Lineons
	\mathbb{Z}_2 gauge theory	\mathbb{Z}_2 tensor gauge theory
Low energy QFT	$\frac{2}{2\pi} \ \hat{a} \wedge da$	$\frac{2}{2\pi} \left(\hat{A}_0 B + \hat{A} E \right)$

(2+1)d \mathbb{Z}_2 Gauge Theory

• Higgs the ordinary U(1) gauge theory a_{μ} to \mathbb{Z}_2 :

$$\mathcal{L}_{Higgs} = \left(\partial_{\mu}\varphi - 2a_{\mu}\right)^{2} - f_{\mu\nu}f^{\mu\nu}$$
$$a_{\mu} \sim a_{\mu} + \partial_{\mu}\alpha$$
$$\varphi \sim \varphi + 2\alpha$$

(dimensionful couplings suppressed)

 $\varphi \sim \varphi + 2\pi$ is a charge-2, real Stueckelberg scalar field. $f_{\mu\nu} = \partial_{\mu}a_{\nu} - \partial_{\nu}a_{\mu}$ is the field strength.

• At low energy, this Higgs model can be dualized to a Chern-Simons theory [Maldacena-Moore-Seiberg, Banks-Seiberg, Kapustin-Seiberg]

$$\mathcal{L} = \frac{2}{2\pi} \epsilon^{\mu\nu\rho} \hat{a}_{\mu} \partial_{\nu} a_{\rho} \qquad \qquad \text{Duality: } \hat{a}_{\mu} \leftrightarrow \varphi$$

13

\mathbb{Z}_2 Gauge Theory

- The \mathbb{Z}_2 gauge theory can be derived by the following steps:
- 1. Gauge theory a_{μ} with ordinary U(1) gauge symmetry
- 2. Higgs the gauge group to \mathbb{Z}_2

Strategy for the X-cube Model

- We will follow the same path as in the toric code
- 1. Gauge theory A with **dipole** U(1) gauge symmetry
- 2. Higgs the gauge group to \mathbb{Z}_2

QFT for Fractons

- New elements in our nonstandard QFT for fractons
 - Spacetime symmetry: non-relativistic, no rotation symmetry
 - Exotic global and gauge symmetries
 - Discontinuous field configuration

Spacetime Symmetry

- Spacetime symmetry in 3+1d:
 - 90 degree spatial rotations = cubic group = S_4
 - Continuous translations in space and time
- In relativistic QFT, fields are in the irreps of the Lorentz group, e.g. scalar, vector, n-form...
- Our fields are in the irreps of the cubic group.

Space Symmetry: Cubic Group S₄

(ignoring reflections)

Its representations are

- **1** the trivial representation (a scalar)
- **3** the vector representation V^i : V^x , V^y , V^z

The SO(3) traceless symmetric tensor is decomposed as $\mathbf{3'} \oplus \mathbf{2}$

- $\mathbf{3'} T^{(ij)}$ with $i \neq j$: T^{xy}, T^{yz}, T^{zx}
- **2** D^{ii} with vanishing trace: D^{xx} , D^{yy} , $D^{zz} = -D^{xx} D^{yy}$. We will also label them as $D^{[ij]k} = \epsilon^{ijk} D^{kk}$
- $\mathbf{1}' P^{(xyz)}$. It arises in the three index symmetric tensor of SO(3)

Strategy

• We will follow the same path as in toric code

- 1. Gauge theory A with **dipole** U(1) gauge symmetry
- 2. Higgs the gauge group to \mathbb{Z}_2

Dipole Gauge Symmetry

• Gauge fields and gauge transformations [Xu-Wu, Slagle-Kim, Bulmash-Barkeshli, Ma-Hermele-Chen, You-Burnell-Hughes...] S_4 irrep

$$A_0 \sim A_0 + \partial_0 \alpha \qquad \qquad \mathbf{1}$$

$$A_{ij} \sim A_{ij} + \partial_i \partial_j \alpha \qquad \qquad \mathbf{3'}$$

• Gauge-invariant electric and magnetic fields

$$E_{ij} = \partial_0 A_{ij} - \partial_i \partial_j A_0$$

$$B_{[ij]k} = \partial_i A_{jk} - \partial_j A_{ik}$$
2

20

i, j, k = x, y, z

 $(i \neq j \neq k)$

U(1) Tensor Gauge Theory

$$A_0 \sim A_0 + \partial_0 \alpha \qquad A_{ij} \sim A_{ij} + \partial_i \partial_j \alpha$$

• U(1) tensor gauge theory

$$\mathcal{L}_{U(1)} = \frac{1}{2g_e^2} E_{ij} E^{ij} - \frac{1}{2g_m^2} B_{[ij]k} B^{[ij]k}$$

• Gauss law

$$\partial_x \partial_y E^{xy} + \partial_y \partial_z E^{yz} + \partial_z \partial_x E^{zx} = 0$$

• This is a gapless fracton model.

Strategy

- We will follow the same path as in toric code
- 1. Gauge theory A with **dipole** U(1) gauge symmetry
- 2. Higgs the gauge group to \mathbb{Z}_2

Higgsing the Dipole Gauge Symmetry [Seiberg-SHS 2020]

(dimensionful couplings suppressed)

• Higgs the U(1) tensor gauge theory A to \mathbb{Z}_2 :

$$\mathcal{L}_{Higgs} = (\partial_0 \phi - \mathbf{2}A_0)^2 + (\partial_{ij} \phi - \mathbf{2}A_{ij})^2 + (E_{ij}^2 - B_{[ij]k}^2)$$

$$A_0 \sim A_0 + \partial_0 \alpha, \qquad A_{ij} \sim A_{ij} + \partial_i \partial_j \alpha$$

$$\phi \sim \phi + \mathbf{2}\alpha$$

 $\phi \sim \phi + 2\pi$ is a charge-2, real Stueckelberg scalar field.

• At low energy, this Higgs model can be dualized to a BF-type Lagrangian

$$\mathcal{L} = \frac{2}{2\pi} (\hat{A}_0 B + \hat{A} E)$$

Duality: $\left(\hat{A}_0^{[ij]k}, \hat{A}^{ij} \right) \leftrightarrow \phi$

23

\mathbb{Z}_2 Tensor Gauge Theory

[Slagle-Kim 2017, Seiberg-SHS 2020]

$$\mathcal{L} = \frac{2}{2\pi} \left(\hat{A}_0 B + \hat{A} E \right) = \frac{2}{2\pi} \left(A_0 \hat{B} + A \hat{E} \right)$$

(indices suppressed)

• Two sets of gauge fields (A_0, A_{ij}) and $(\hat{A}_0^{[ij]k}, \hat{A}^{ij})$

 S_4 irrep: (**1**, **3'**) (**2**, **3'**)

• Gauge symmetry:

$$\begin{array}{ll} A_{0} \rightarrow A_{0} + \partial_{0}\alpha, & A \rightarrow A + \partial\partial\alpha \\ \\ \hat{A}_{0} \rightarrow \hat{A}_{0} + \partial_{0}\hat{\alpha}, & \hat{A} \rightarrow \hat{A} + \partial\hat{\alpha} \end{array}^{i,j,k = x,y,z} \\ \hat{A} \rightarrow \hat{A} + \partial\hat{\alpha} \end{array}$$

Higgsing and Dualizing

(2+1)d \mathbb{Z}_2 gauge theory	(3+1)d ℤ ₂ tensor gauge theory [Seiberg-SHS 2020]
$\mathcal{L} = \left(\partial_{\mu}\varphi - 2a_{\mu}\right)^{2} - f_{\mu\nu}f^{\mu\nu}$ Higgsing PC Dualizing:	$\mathcal{L} = (\partial_0 \phi - 2A_0)^2 + (\partial_i \partial_j \phi - 2A_{ij})^2 + (E_{ij}^2 - B_{[ij]k}^2)$ Higgsing PC Dualizing:
Higgsing RG $\widehat{a}_{\mu} \leftrightarrow \varphi$	Higgsing RG Dualizing: $\left(\hat{A}_{0}^{[ij]k}, \hat{A}^{ij}\right) \leftrightarrow \phi$
$\mathcal{L} = \frac{2}{2\pi} \epsilon^{\mu\nu\rho} \hat{a}_{\mu} \partial_{\nu} a_{\rho}$	$\mathcal{L} = \frac{2}{2\pi} (\hat{A}_0 B + \hat{A} E)$

\mathbb{Z}_N Tensor Gauge Theory

• It is straightforward to generalize to \mathbb{Z}_N tensor gauge theory (indices suppressed):

$$\mathcal{L} = \frac{N}{2\pi} \left(\hat{A}_0 B + \hat{A} E \right) = \frac{N}{2\pi} \left(A_0 \hat{B} + A \hat{E} \right)$$

• The level $N \in \mathbb{Z}$ is quantized by a discontinuous large gauge transformation α on the Euclidean four-torus with lengths $\ell^{\tau}, \ell^{x}, \ell^{y}, \ell^{z}$:

$$\alpha(\tau, x, y, z) = 2\pi \left[\frac{x}{\ell^x} \Theta(y - y_0) + \frac{y}{\ell^y} \Theta(x - x_0) - \frac{xy}{\ell^x \ell^y}\right]$$

26

Does this do the job?

Let's reproduce all the peculiarities of fractons.

Peculiarities of the X-cube Model

- Number of ground states grows exponentially in the linear size L^{x}, L^{y}, L^{z} of the system (assuming periodic boundary condition). ground state degeneracy = $2^{2L^{x}+2L^{y}+2L^{z}-3}$ It becomes infinite in the continuum limit $L^{i} \rightarrow \infty$.
- The ground state degeneracy is robust: small deformations by local operators cannot lift the degeneracy in perturbation theory.
- Excitations have restricted mobility.

Peculiarities of the X-cube Model

• Number of ground states grows exponentially in the linear size L^x, L^y, L^z of the system (assuming periodic boundary condition). ground state degeneracy = $2^{2L^x+2L^y+2L^z-3}$

It becomes infinite in the continuum limit $L^i \to \infty$.

1 will return to this in the end

- The ground state degeneracy is robust: small deformations by local operators cannot lift the degeneracy in perturbation theory.
- Excitations have restricted mobility.

Robustness

• Small perturbations at short distances become local operators in the long-distance QFT. If they are relevant, they destabilize the system.

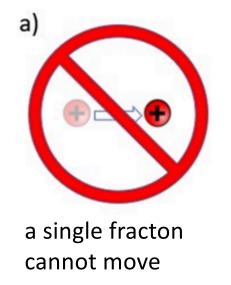
$$\mathcal{L} = \frac{2}{2\pi} (\hat{A}_0 B + \hat{A} E)$$

• Equation of motion sets all the local operators (electric and magnetic fields) to zero:

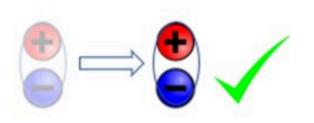
$$E = B = \hat{E} = \hat{B} = 0$$

- Since there is <u>no local operator</u> in the \mathbb{Z}_2 tensor gauge theory, it is robust.
- Similar to Chern-Simons theory.

Restricted Mobility



b)



but two of them can move together

How do we explain this from quantum field theory?

 $A_0 \sim A_0 + \partial_0 \alpha \qquad A_{ij} \sim A_{ij} + \frac{\partial_i \partial_j \alpha}{\partial_j \alpha}$

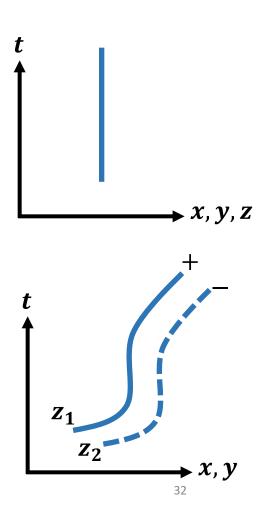
• A single fracton

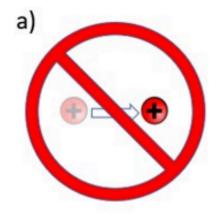
$$\exp[i\int_{-\infty}^{\infty}dt\,A_0]$$

- It can **NOT** move because there is no connection A_i .
- A pair of fractons with opposite charges can move

Wilson
strip
$$\exp\left[i\int_{z_1}^{z_2} dz \int_{C \in (t,x,y)} (\partial_z A_0 dt + A_{zx} dx + A_{zy} dy)\right]$$

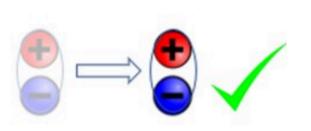
where C is a spacetime curve in t, x, y. It is a planon.





a single fracton cannot move

b)



but two of them can move together

The restricted mobility of fractons is explained by the gauge invariance of the defects

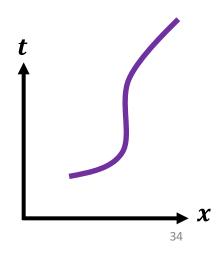
Lineons as Defects of \widehat{A}

 $\hat{A}_0^{k(ij)} \sim \hat{A}_0^{k(ij)} + \partial_0 \hat{\alpha}^{k(ij)} \quad \hat{A}^{ij} \sim \hat{A}^{ij} + \partial_k \hat{\alpha}^{k(ij)}$

- Lineons come with three species associated with x, y, z
- A single lineon of species x can move along the x direction, but not y, z

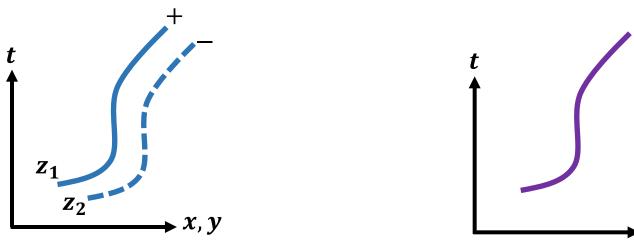
Wilson
line
$$\exp\left[i\int_{\hat{C}\in(t,x)}(\hat{A}_{0}^{x(yz)}dt + \hat{A}^{yz}dx)\right]$$

where \hat{C} is a spacetime curve in t, x .



Cast of Characters in X-cube Model

- Fractons and lineons are represented by Wilson defects in the continuum \mathbb{Z}_2 tensor gauge theory.
- Similar to the anyons of the ordinary \mathbb{Z}_2 gauge theory.

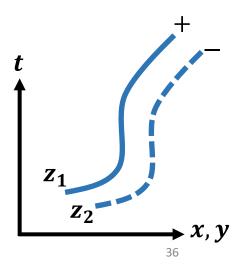


X

Quasi-Topological Defects

$$\exp\left[i\int_{z_1}^{z_2} dz \int_{C\in(t,x,y)} (\partial_z A_0 dt + A_{zx} dx + A_{zy} dy)\right]$$

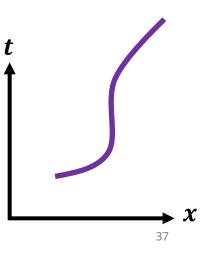
- The Wilson strip (planon) is <u>not</u> completely topological.
- But since the electric and magnetic fields E = B = 0 vanish, the Wilson strip is topological in C.
- It's topological in *t*, *x*, *y*, but not in *z*.
- At a fixed time it is a strip operator generating Z₂ dipole global symmetry. In quantum information theory, this is known as a logical operator.



Quasi-Topological Defects

$$\exp\left[i\int_{\hat{C}\in(t,x)}(\hat{A}_{0}^{x(yz)}dt+\hat{A}^{yz}dx)\right]$$

- Similarly the hatted Wilson line (lineon) is <u>not</u> completely topological.
- But since the electric and magnetic fields $\hat{E} = \hat{B} = 0$ vanish, the hatted Wilson line is topological in \hat{C} .
- It's topological in *t*, *x*, but not in *y*, *z*.
- At a fixed time it is a line operator generating a Z₂ tensor global symmetry. In quantum information theory, this is known as a logical operator.



Ground State Degeneracy = $2^{2L^{x}+2L^{y}+2L^{z}-3}$

- The ground state degeneracy is infinite in the continuum limit.
- We will regularize the theory on a lattice.
- Global symmetry operators (logical operators) \mathbb{Z}_2 tensor global symmetry (line) \mathbb{Z}_2 dipole global symmetry (strip)

nontrivial algebra

• The symmetry operators form $2L^x + 2L^y + 2L^z - 3$ pairs of Heisenberg algebra (clock and shift)

 $AB = -BA, \qquad A^2 = B^2 = 1$

• The $2^{2L^x+2L^y+2L^z-3}$ ground states are in the minimal representation of this algebra.

Fracton Peculiarities	QFT Explanations
Ground State Degeneracy = $2^{2L^x + 2L^y + 2L^z - 3}$	Exotic Global Symmetries and Their Algebras
Robustness	Absence of Local Operators
Restricted Mobility	Gauge Invariance of the Wilson Defects

Conclusion

- Extending the framework of QFT to incorporate fractons.
- \mathbb{Z}_2 tensor gauge theory: the low-energy limit of the X-cube model.

$$\mathcal{L} = \frac{2}{2\pi} \left(\hat{A}_0 B + \hat{A} E \right)$$

- It captures all the universal peculiarities of the X-cube model.
- Its defects and operators are topological in some directions but not in others.

Outlook on Fractons

- QFT for other fracton models
 - e.g. checkerboard model [Gorantla-Lam-Seiberg-SHS, to appear]
- Place the theory on more general manifolds
- Braiding between fractons and lineons
- Is there a mathematical formalism similar to the unitary modular tensor category classifying gapped fracton phases?

Many more to explore!

Thank you!

And stay healthy!