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Topological string partition functions

Consider A/B model topological string on Calabi-Yau manifold X/Y.

World-sheet definition of Ztop yields asymptotic (?) series

logZtop ∼
∞∑
g=0

λ2g−2Fg (1)

Question: Existence of summations?

Do there exist functions Ztop having (1) as asymptotic expansion?

(a) Functions on which space?

(b) Functions, sections of a line bundle, or what?

Ztop could be locally defined functions on MKäh(X ) or Mcplx(Y ).

Ztop = Ztop(t), t = (t1, . . . , td) : coordinates on MKäh(X ).

Dream: There exists a natural geometric structure on Mcplx(Y ) allowing
us to represent Ztop as “local section”.
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Our playground: Local Calabi-Yau manifolds YΣ of class Σ:

uv − fΣ(x , y) = 0 s.t. Σ =
{

(x , y) ∈ T ∗C ; fΣ(x , y) = 0
}
⊂ T ∗C smooth,

fΣ(x , y) = y2 − q(x), q(x)(dx)2: quadratic differential on cplx. surface C .

Moduli space B ≡Mcplx(Y ): Space of pairs (C , q), C : Riemann surface,
q: quadratic differential.

Special geometry: Coordinates ar =
∫
αr

√
q, ǎr =

∫
α̌r

√
q = ∂

∂arF(a),

where {(αr , α̌r ); r = 1, . . . , d} is a canonical basis for H1(Σ,Z).

Integrable structure: (Donagi-Witten, Freed) ∃ canonical torus fibration

π :Mint(Y )→ B, Θb := π−1(b) = Cd/Zd + τ(b) · Zd ,

τ(b)rs = ∂
∂arı

∂
∂ası
F(aı), coordinates (θrı , θ̌

r
ı ), r = 1, . . . , d , on torus fibers.

(a) Mint(Y ) moduli space of pairs (Σ,D), D: divisor on Σ (Abel-Jacobi)

(b) Mint(Y ) 'MHit(Y ), moduli space of Higgs pairs (E , ϕ) (Hitchin)

(c) Mint(Y ) ' intermediate Jacobian fibration (Diaconescu-Donagi-Pantev)
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Our starting point

Some of YΣ: limits of toric CY ⇒ compute Ztop with topological vertex1.

Comparison with instanton counting2 and AGT-correspondence
⇒ Ztop ∼ conformal block of Virasoro VOA at c = 1.

String dualities relate3 Ztop(t; ~)
[MNOP]∼ ZD0-D2-D6(t; ~) to free fermions∑

p∈H2(Y ,Z)

epξZtop(t + ~p; ~)
[MNOP]∼ ZD0-D2-D4-D6(ξ, t; ~)

[DHSV]
= Zff(ξ, t; ~),

which can be inverted to get Ztop. Recent progress4 on the relations

Free fermion CFT↔ Tau-functions↔ Virasoro VOA,

and relation to exact WKB/abelianisation allow us to interpret the results
for Ztop in geometric terms, leading to the picture outlined below.

1
Aganagic, Klemm, Marino, Vafa

2
Moore-Nekrasov-Shatashvili; Losev-Nekrasov-Shatashvili; Nekrasov

3
Dijkgraaf-Hollands-Sulkowski-Vafa [DHSV] using Maulik-Nekrasov-Okounkov-Pandharipande [MNOP]

4
Gamayun-Iorgov-Lisovyy; Iorgov-Lisovyy-J.T.
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Our proposal in a nutshell: (compare with Alexandrov, Persson, Pioline – later!)

Main geometric players:

Moduli space B ≡Mcplx(Y ) of complex structures,
torus fibration Mint(Y ) over B canonically associated to the special
geometry on B (∼ intermediate Jacobian fibration).

There then exist

(A) a canonical one-parameter (~) family of deformations of the complex
structures on Mint(Y ), defined by an atlas of Darboux coordinates
xı = (xı, x̌

ı) on Z :=Mint(Y )× C∗,
(B) a canonical pair (LΘ,∇Θ) consisting of

LΘ: line bundle on Z, transition functions: Difference generating functions
of changes of coordinates xı,

∇Θ: connection on LΘ, flat sections: Tau-functions Tı(xı, x̌
ı),

defining the topological string partition functions via

Tı(xı, x̌
ı) =

∑
n∈Zd

e2πi (n,x̌ı)Z ıtop(xı − n).
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(A) The BPS Riemann-Hilbert problem (Gaiotto-Moore-Neitzke; Bridgeland)

Define ~-deformed complex structures by atlas of coordinates on
Z 'Mcplx(Y )× C× with charts {Uı; ı ∈ I}, Darboux coordinates

xı = (xı, x̌
ı) = xı(~), Ω =

d∑
r=1

dx rı ∧ dx̌ ır , such that

changes of coordinates across {~ ∈ C×; aγ/~ ∈ iR−} represented as

X 
γ′ = X ı

γ′(1− Xγ)〈γ
′,γ〉Ω(γ),

X 
γ = e2πi〈γ,xı〉 = e2πi(pır x

r
ı−qrı x̌ır ),

if γ = (q1
ı , . . . , q

d
ı ; pı1, . . . , p

ı
d),

determined by data Ω(γ) satisfying Kontsevich-Soibelman-WCF.

asymptotic behaviour

xrı ∼
1

~
arı + ϑrı +O(~), x̌rı ∼

1

~
ǎ ır + ϑ̌ır +O(~),

with (arı , ǎ
ı
r ) coordinates on B, θır := ϑır − τ · ϑ̌rı coordinates on Θb.
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Solving the BPS-RH problem

1st Solution: NLIE (Gaiotto-Moore-Neitzke (GMN); Gaiotto)

Xγ(~) = X sf
γ (~) exp

[
− 1

4πi

∑
γ′

〈γ, γ′〉Ω(γ′)

∫
lγ′

d~′

~′
~′ + ~
~′ − ~

log(1− Xγ′(~′))

]

with logX sf
γ (~) = 1

~aγ + ϑγ . (Gaiotto: Conformal limit of GMN-NLIE)

2nd Solution: Quantum curves

Quantum curves: Opers, certain pairs (E ,∇~) = (bundle, connection) !

differential operators ~2∂2
x − q~(x).

Coordinates X ı
γ(~), X̌ γ

ı (~) for space of monodromy data defined by
Borel summation of exact WKB solution  charts Uı labelled by
spectral networks (Gaiotto-Moore-Neitzke; Hollands-Neitzke).
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2nd Solution: Quantum curves

Equation y2 = q(x) defining Σ admits canonical quantisation y → ~
i
∂
∂x ,

 oper ~2 ∂
2

∂x2
− q(x) ! ∇~ = ~

∂

∂x
−
(

0 q
1 0

)
.

Observation: There is an essentially canonical generalisation ~-deforming
pairs (Σ,D), representable by opers with apparent singularities

~2∂2
x − q~(x), q~(x) =

3~2

4(x − ur )2
+O((x − ur )−1), r = 1, . . . , d .

Conjecture

Solution of BPS-RH-problem given by composition of holonomy map with
rational coordinates for space of monodromy data,

Mchar(Y ) :
Algebraic variety having coordinate ring

generated by trace functions tr(ρ(γ))

having Borel summable ~-expansion.
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Expansion in ~ - exact WKB: Solutions to
(
~2 ∂2

∂x2 − q~(x)
)
χ(x) = 0,

χ
(b)
± (x) =

1√
Sodd(x)

exp

[
±
∫ x

dx ′ Sodd(x ′)

]
,

with Sodd = 1
2 (S (+) − S (−)), S (±)(x) being formal series solutions to

q~ = λ2(S2 + S ′), S(x) =
∞∑

k=−1

~kSk(x), S
(±)
−1 = ±√q0. (2)

It is believed5 that series (2) is Borel-summable away from Stokes-lines,

Im(w(x)) = const., w(x) = e−i arg(λ)

∫ x

dx ′
√
q(x ′)

Voros symbols Vβ :=
∫
β dx Sodd(x) can be Borel-summable, then

representing ingredients of the solution to the BPS-RH-problem.

5Probably proven by Koike-Schäfke (unpublished), and by Nikolaev (to appear).
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Borel summability depends on the topology of Stokes graph formed by
Stokes lines (determined by q0 ∼ point on B). Two “extreme” cases:

FG Stokes graph !
triangulation of C

FN Stokes graph !
pants decomposition

c)
d)a)

b)

In between there exist several hybrid types of graphs.

Case FG: D. Allegretti has proven conjecture of T. Bridgeland: Voros
symbols ∼ Fock-Goncharov (FG) type coordinates solve BPS-RH problem.

Important: Extension to case FN needed for topological string applications:
Case FN: Real6 “skeleton” in B, described by Jenkins-Strebel differentials7.

6Real values of ~ and special coordinates arı
7Stokes graphs decompose C into ring domains
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Second half of our proposal:

There exists a canonical pair (LΘ,∇Θ) consisting of

LΘ: line bundle on Z, transition functions: Difference generating functions
of changes of coordinates xı

∇Θ: connection on LΘ, flat sections: Tau-functions Tı(xı, x̌
ı),

determining Ztop with the help of

Tı(xı, x̌
ı) =

∑
n∈Zd

e2πi (n,x̌ı)Z ıtop(xı − n).

This means that there are wall-crossing relations

Tı(xı, x̌
ı) = Fı(xı, x)T(x, x̌

),

on overlaps Uı ∩U of charts, with transition functions Fı(xı, x): difference
generating functions, defined by the changes of coordinates xı = xı(x).
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Difference generating functions:

T (x, x̌) =
∑
n∈Zd

e2πi(n,x̌)Z (x− n) ⇔

{
T (x, x̌ + δr ) = T (x, x̌)

T (x + δr , x̌) = e2πi x̌rT (x, x̌)
(3)

Coordinates considered here are such that xı = xı(x, x̌
) can be solved for

x̌ in Uı ∩ U, defining x̌(xı, x). Having defined tau-functions Tı(xı, x̌
ı) and

T(x, x̌
) on charts Uı and U, respectively, there is a relation of the form

Tı(xı, x̌
ı) = Fı(xı, x)T(x, x̌

),

on the overlaps Uı = Uı ∩ U. To ensure that both Tı and T satisfy the
relations (3), Fı(xı, x) must satisfy

Fı(xı + δr , x) = e+2πi x̌ır Fı(xı, x), (4a)

Fı(xı, x + δr ) = e−2πi x̌r Fı(xı, x). (4b)

We will call functions Fı(xı, x) satisfying the relations (4) associated to a
change of coordinates xı = xı(x) difference generating functions.
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Basic example:

X ′ = τ(X ) = Y−1, (5)

Y ′ = τ(Y ) = X (1 + Y−1)−2.

Introduce logarithmic variables x , y , x ′, y ′,

X = e2πi x , Y = −e2πi y , X ′ = −e2πi x ′ , Y ′ = e2πi y ′
.

The equations (5) can be solved for Y and Y ′,

Y (x , x ′) = −e−2πi x ′ , Y ′(x , y) = e2πi x(1− e2πi x ′)−2.

The difference generating function J (x , x ′) associated to (5) satisfies

J (x + 1, x ′)

J (x , y)
= −(Y (x , x ′))−1,

J (x , x ′ + 1)

J (x , y)
= Y ′(x , x ′).

A function satisfying these properties is

J (x , x ′) = e2πixx ′(E (x ′))2, E (z) = (2π)−ze−
πi
2
z2 G (1 + z)

G (1− z)
,

where G (z) is the Barnes G -function satisfying G (z + 1) = Γ(z)G (z).
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Tau-functions as solutions to the secondary RH problem

In arXiv:2004.04585 and work in progress we explain how to define
solutions Tı(xı, x̌

ı) to the secondary RH problem by combining

free fermion CFT with exact WKB.

Key features:

Proposal covers real slice in B represented by Jenkins-Strebel
differentials using FN type coordinates,

agrees with topological vertex calculations on the real slice,
whenever available,

and defines canonical extensions into strong coupling regions8

(for C = C0,2 using important work of Its-Lisovyy-Tykhyy).

Exact WKB for quantum curves fixes normalisation ambiguities
⇒ the ~-deformation is “as canonical as possible”.

8In the sense of Seiberg-Witten theory
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The picture found in the class Σ examples suggests:

The higher genus corrections in the topological string
theory on X are encoded in a canonical ~-deformation of
the moduli space Mcplx(Y ) of complex structures on the
mirror Y of X .

There are hints that this picture may generalise beyond the class Σ
examples:

(A) Relation to geometry of hypermultiplet moduli spaces – see below

(B) Relation to spectrum of BPS-states, geometry of space of stability
conditions (T. Bridgeland)

(C) Relations to spectral determinants (Marino et.al.)?

Take-outs: (see below)

1) Relation classical-quantum

2) Relation with Theta-functions on intermediate Jacobian fibration

3) Interplay between 2d-4d wall-crossing and free fermion picture
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(A) Relation to geometry to hypermultiplet moduli spaces

A similar characterisation of Ztop follows from the proposal of Alexandrov,
Persson, and Pioline (APP) for NS5-brane corrections to the geometry of
hypermultiplet moduli spaces:

SUSY  describe quantum corrections using twistor space geometry,

locally Z 'Mcplx(Y )× P1,

having atlas of Darboux coordinates xı = (xı, x̌
ı) on Z.

Combining mirror symmetry, S-duality, and twistor space geometry ⇒
quantum correction from one NS5-brane encoded in locally defined
holomorphic functions HNS5(xı, x̌

ı) having representation of the form

HNS5(xı, x̌
ı) =

∑
n∈Zd

e2πi (n,x̌ı)K ı
NS5(xı − n).

Using the DT-GW-relation (MNOP): K ı
NS5(xı) ∼ Z ıtop(xı).

This suggests:

{
Our results  confirmation of APP-proposal,

APP-framework predicts generalisations of our results.
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1) Relation classical-quantum: The magic formula

Tı(xı, x̌
ı) =

∑
n∈Zd

e2πi (n,x̌ı)Z ıtop(xı − n) (6)

can be interpreted as a relation between an honest quantum deformation
of B and the ~-deformation of a classical space discussed in this talk.

The main observation in Iorgov-Lisovyy-J.T. was that the transform (6)
simultaenously diagonalises all operators in a realisation of the quantised
algebra of functions on Mchar(Y ) generated by Verlinde loop operators.

In work by Alexandrov-Pioline, it was shown that the wall-crossing
relations Tı(xı, x̌

ı) = Fı(xı, x)T(x, x̌
), translate into integral transforms

Z ıtop(xı) =

∫
dx K (xı, x)Z


top(x).

In view of the relation with Theta-functions (next slide) this is probably
best understood in connection with the ideas related to quantisation of the
intermediate Jacobian going back to Witten.
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2) Relation with Theta-functions on intermediate Jacobian fibration

Let us use the isomonodromic tau-functions to define ΘΣ~(a, θ; z ; ~),

ΘΣ~(a, θ; z ; ~) := T
(
σ(a, θ; ~) , τ(a, θ; ~) ; z ; ~

)
, (7)

when d = 1, σ ≡ x1
ı , η ≡ x̌ ı1, θ = θı1.

Claim

The limit

log ΘΣ(a, θ; z) := lim
~→0

[
log ΘΣ~(a, θ; z ; ~)− logZtop(σ(a, θ); z ; ~)

]
(8)

exists, with function ΘΣ(a, θ; z) defined in (8) being the theta function

ΘΣ(a; θ; z) =
∑
n∈Z

e2πinθ eπin2τΣ(a), (9)

with τΣ(a) related to F(a, z) by τΣ =
1

2πi

∂2F
∂a2

.
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3) Interplay between 2d-4d wall-crossing and free fermion picture

Background YΣ can be modified to open-closed background by inserting
Aganagic-Vafa branes located at points of Σ. Generalisation of the formula

Tı(xı, x̌
ı) ≡ 〈Ω , fΨ 〉 =

∑
n∈Zd

e2πi (n,x̌ı)Z ıtop(xı − n)

due to Iorgov-Lisovyy-J.T. will then relate free fermion expectation values

Ψ(x , y) = 〈〈 ψ̄(x)ψ(y)〉〉 =
〈Ω, ψ̄(x)ψ(y)fΨ〉
〈Ω , fΨ 〉

,

to expectation values of degenerate fields of the Virasoro algebra, represen-
ting the fermions of Aganagic-Dijkgraaf-Klemm-Marino-Vafa in our context.

Noting that Ψ(x , y) represents the solution to the classical RH-problem
associated to the tau-function Tı = 〈Ω , fΨ〉 one sees that:

relation between classical RH-problem to BPS-RH problem:
Example for 4d-2d wall crossing (GMN).

Exact WKB fixes the normalisations for Ψ(x , y), via 4d-2d wall crossing
determining the normalisations of Tı.
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