Geometric characterisation of topological string partition functions

Jörg Teschner
Department of Mathematics
University of Hamburg,
and
DESY Theory

28. Juli 2020

Based on joint work with I. Coman, P. Longhi, E. Pomoni

Topological string partition functions

Consider A/B model topological string on Calabi-Yau manifold X / Y.
World-sheet definition of $Z_{\text {top }}$ yields asymptotic (?) series

$$
\begin{equation*}
\log Z_{\mathrm{top}} \sim \sum_{g=0}^{\infty} \lambda^{2 g-2} \mathcal{F}_{g} \tag{1}
\end{equation*}
$$

Question: Existence of summations?

Do there exist functions $Z_{\text {top }}$ having (1) as asymptotic expansion?
(a) Functions on which space?
(b) Functions, sections of a line bundle, or what?
$Z_{\text {top }}$ could be locally defined functions on $\mathcal{M}_{\text {Käh }}(X)$ or $\mathcal{M}_{\text {cplx }}(Y)$.

$$
Z_{\text {top }}=Z_{\text {top }}(t), \quad t=\left(t_{1}, \ldots, t_{d}\right): \text { coordinates on } \mathcal{M}_{\text {Käh }}(X) .
$$

Dream: There exists a natural geometric structure on $\mathcal{M}_{\text {cplx }}(Y)$ allowing us to represent $Z_{\text {top }}$ as "local section".

Our playground: Local Calabi-Yau manifolds Y_{Σ} of class Σ :
$u v-f_{\Sigma}(x, y)=0$ s.t. $\Sigma=\left\{(x, y) \in T^{*} C ; f_{\Sigma}(x, y)=0\right\} \subset T^{*} C$ smooth, $f_{\Sigma}(x, y)=y^{2}-q(x), q(x)(d x)^{2}$: quadratic differential on cplx. surface C.
Moduli space $\mathcal{B} \equiv \mathcal{M}_{\text {cplx }}(Y)$: Space of pairs $(C, q), C$: Riemann surface, q : quadratic differential.
Special geometry: Coordinates $a^{r}=\int_{\alpha^{r}} \sqrt{q}$, ăr $=\int_{\check{\alpha}_{r}} \sqrt{q}=\frac{\partial}{\partial a^{r}} \mathcal{F}(a)$, where $\left\{\left(\alpha^{r}, \check{\alpha}_{r}\right) ; r=1, \ldots, d\right\}$ is a canonical basis for $H_{1}(\Sigma, \mathbb{Z})$.

Integrable structure: (Donagi-Witten, Freed) \exists canonical torus fibration

$$
\pi: \mathcal{M}_{\mathrm{int}}(Y) \rightarrow \mathcal{B}, \quad \Theta_{b}:=\pi^{-1}(b)=\mathbb{C}^{d} / \mathbb{Z}^{d}+\tau(b) \cdot \mathbb{Z}^{d}
$$

$\tau(b)_{r s}=\frac{\partial}{\partial a_{\imath}^{r}} \frac{\partial}{\partial a_{\imath}^{s}} \mathcal{F}\left(a_{\imath}\right)$, coordinates $\left(\theta_{\imath}^{r}, \check{\theta}_{\imath}^{r}\right), r=1, \ldots, d$, on torus fibers.
(a) $\mathcal{M}_{\text {int }}(Y)$ moduli space of pairs (Σ, \mathcal{D}), \mathcal{D} : divisor on Σ (Abel-Jacobi) (b) $\mathcal{M}_{\text {int }}(Y) \simeq \mathcal{M}_{\text {Hit }}(Y)$, moduli space of Higgs pairs (\mathcal{E}, φ) (Hitchin) (c) $\mathcal{M}_{\text {int }}(Y) \simeq$ intermediate Jacobian fibration (Diaconescu-Donagi-Pantev)

Our starting point

Some of Y_{Σ} : limits of toric $C Y \Rightarrow$ compute $Z_{\text {top }}$ with topological vertex ${ }^{1}$.
Comparison with instanton counting ${ }^{2}$ and AGT-correspondence $\Rightarrow Z_{\text {top }} \sim$ conformal block of Virasoro VOA at $c=1$.
String dualities relate ${ }^{3} Z_{\text {top }}(t ; \hbar) \stackrel{[\text { MNOP }]}{\sim} Z_{\text {DO-D2-D6 }}(t ; \hbar)$ to free fermions

$$
\sum_{p \in H^{2}(Y, \mathbb{Z})} e^{p \xi} Z_{\text {top }}(t+\hbar p ; \hbar) \stackrel{[\text { MNOP] }}{\sim} Z_{\text {D0-D2-D4-D6 }}(\xi, t ; \hbar) \stackrel{[\mathrm{DHSV}]}{=} Z_{\mathrm{ff}}(\xi, t ; \hbar),
$$

which can be inverted to get $Z_{\text {top }}$. Recent progress ${ }^{4}$ on the relations

$$
\text { Free fermion CFT } \leftrightarrow \text { Tau-functions } \leftrightarrow \text { Virasoro VOA, }
$$

and relation to exact WKB/abelianisation allow us to interpret the results for $Z_{\text {top }}$ in geometric terms, leading to the picture outlined below.

[^0]Our proposal in a nutshell: (compare with Alexandrov, Persson, Pioline - later!)
Main geometric players:

- Moduli space $\mathcal{B} \equiv \mathcal{M}_{\text {cplx }}(Y)$ of complex structures,
- torus fibration $\mathcal{M}_{\text {int }}(Y)$ over \mathcal{B} canonically associated to the special geometry on $\mathcal{B}(\sim$ intermediate Jacobian fibration).

There then exist

(A) a canonical one-parameter (\hbar) family of deformations of the complex structures on $\mathcal{M}_{\text {int }}(Y)$, defined by an atlas of Darboux coordinates
$x_{l}=\left(x_{i}, \check{x}^{2}\right)$ on $\mathcal{Z}:=\mathcal{M}_{\text {int }}(Y) \times \mathbb{C}^{*}$,
(B) a canonical pair $\left(\mathcal{L}_{\Theta}, \nabla_{\Theta}\right)$ consisting of
\mathcal{L}_{\ominus} : line bundle on \mathcal{Z}, transition functions: Difference generating functions of changes of coordinates x_{l},
∇_{Θ} : connection on \mathcal{L}_{Θ}, flat sections: Tau-functions $\mathcal{T}_{i}\left(\mathrm{x}_{\imath}, \check{x}^{2}\right)$,
defining the topological string partition functions via

$$
\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \check{\mathrm{x}}^{2}\right)=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} \mathrm{e}^{2 \pi \mathrm{i}\left(n, \check{\mathrm{x}}^{2}\right)} Z_{\mathrm{top}}^{\imath}\left(\mathrm{x}_{\imath}-\mathrm{n}\right)
$$

(A) The BPS Riemann-Hilbert problem (Gaiotto-Moore-Neitzke; Bridgeland)

Define \hbar-deformed complex structures by atlas of coordinates on $\mathcal{Z} \simeq \mathcal{M}_{\text {cp|x }}(Y) \times \mathbb{C}^{\times}$with charts $\left\{\mathcal{U}_{\imath} ; \imath \in \mathbb{I}\right\}$, Darboux coordinates

$$
x_{l}=\left(x_{l}, \check{x}^{2}\right)=x_{l}(\hbar), \quad \Omega=\sum_{r=1}^{d} d x_{l}^{r} \wedge d \check{x}_{r}^{2}, \quad \text { such that }
$$

- changes of coordinates across $\left\{\hbar \in \mathbb{C}^{\times} ; a_{\gamma} / \hbar \in i \mathbb{R}_{-}\right\}$represented as

$$
X_{\gamma^{\prime}}^{\jmath}=X_{\gamma^{\prime}}^{\imath}\left(1-X_{\gamma}\right)^{\left\langle\gamma^{\prime}, \gamma\right\rangle \Omega(\gamma)}, \quad \begin{array}{ll}
& X_{\gamma}^{\jmath}=e^{2 \pi \mathrm{i}\left\langle\gamma, x_{2}\right\rangle}=e^{2 \pi \mathrm{i}\left(p_{r}^{2} x_{2}^{r}-q_{\imath}^{r} \check{x}_{r}^{l}\right)}, \\
\text { if } \gamma=\left(q_{\imath}^{1}, \ldots, q_{\imath}^{d} ; p_{1}^{\imath}, \ldots, p_{d}^{\imath}\right),
\end{array}
$$

determined by data $\Omega(\gamma)$ satisfying Kontsevich-Soibelman-WCF.

- asymptotic behaviour

$$
\mathrm{x}_{\imath}^{r} \sim \frac{1}{\hbar} a_{\imath}^{r}+\vartheta_{\imath}^{r}+\mathcal{O}(\hbar), \quad \check{x}_{\imath}^{r} \sim \frac{1}{\hbar} \check{a}_{r}^{\imath}+\breve{\vartheta}_{r}^{2}+\mathcal{O}(\hbar),
$$

with $\left(a_{\imath}^{r}, \breve{a}_{r}^{2}\right)$ coordinates on $\mathcal{B}, \theta_{r}^{\imath}:=\vartheta_{r}^{\imath}-\tau \cdot \breve{\vartheta}_{\imath}^{r}$ coordinates on Θ_{b}.

Solving the BPS-RH problem

$1^{\text {st }}$ Solution: NLIE (Gaiotto-Moore-Neitzke (GMN); Gaiotto)
$X_{\gamma}(\hbar)=X_{\gamma}^{\text {sf }}(\hbar) \exp \left[-\frac{1}{4 \pi \mathrm{i}} \sum_{\gamma^{\prime}}\left\langle\gamma, \gamma^{\prime}\right\rangle \Omega\left(\gamma^{\prime}\right) \int_{I_{\gamma^{\prime}}} \frac{d \hbar^{\prime}}{\hbar^{\prime}} \frac{\hbar^{\prime}+\hbar}{\hbar^{\prime}-\hbar} \log \left(1-X_{\gamma^{\prime}}\left(\hbar^{\prime}\right)\right)\right]$
with $\log X_{\gamma}^{\text {sf }}(\hbar)=\frac{1}{\hbar} a_{\gamma}+\vartheta_{\gamma}$. (Gaiotto: Conformal limit of GMN-NLIE)
$2^{\text {nd }}$ Solution: Quantum curves
Quantum curves: Opers, certain pairs $\left(\mathcal{E}, \nabla_{\hbar}\right)=($ bundle, connection $)$ differential operators $\hbar^{2} \partial_{x}^{2}-q_{\hbar}(x)$.

Coordinates $X_{\gamma}^{\imath}(\hbar), \check{X}_{l}^{\gamma}(\hbar)$ for space of monodromy data defined by Borel summation of exact WKB solution \rightsquigarrow charts \mathcal{U}_{2} labelled by spectral networks (Gaiotto-Moore-Neitzke; Hollands-Neitzke).

$2^{\text {nd }}$ Solution: Quantum curves

Equation $y^{2}=q(x)$ defining Σ admits canonical quantisation $y \rightarrow \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial x}$,
\rightsquigarrow oper $\quad \hbar^{2} \frac{\partial^{2}}{\partial x^{2}}-q(x) \quad \leadsto \quad \nabla_{\hbar}=\hbar \frac{\partial}{\partial x}-\left(\begin{array}{ll}0 & q \\ 1 & 0\end{array}\right)$.
Observation: There is an essentially canonical generalisation \hbar-deforming pairs (Σ, \mathcal{D}), representable by opers with apparent singularities

$$
\hbar^{2} \partial_{x}^{2}-q_{\hbar}(x), \quad q_{\hbar}(x)=\frac{3 \hbar^{2}}{4\left(x-u_{r}\right)^{2}}+\mathcal{O}\left(\left(x-u_{r}\right)^{-1}\right), \quad r=1, \ldots, d
$$

Conjecture

Solution of BPS-RH-problem given by composition of holonomy map with rational coordinates for space of monodromy data,

$$
\mathcal{M}_{\text {char }}(Y):
$$

Algebraic variety having coordinate ring generated by trace functions $\operatorname{tr}(\rho(\gamma))$
having Borel summable \hbar-expansion.

Expansion in \hbar - exact WKB: Solutions to $\left(\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}-q_{\hbar}(x)\right) \chi(x)=0$,

$$
\chi_{ \pm}^{(b)}(x)=\frac{1}{\sqrt{S_{\text {odd }}(x)}} \exp \left[\pm \int^{x} d x^{\prime} S_{\text {odd }}\left(x^{\prime}\right)\right]
$$

with $S_{\text {odd }}=\frac{1}{2}\left(S^{(+)}-S^{(-)}\right), S^{(\pm)}(x)$ being formal series solutions to

$$
\begin{equation*}
q_{\hbar}=\lambda^{2}\left(S^{2}+S^{\prime}\right), \quad S(x)=\sum_{k=-1}^{\infty} \hbar^{k} S_{k}(x), \quad S_{-1}^{(\pm)}= \pm \sqrt{q_{0}} \tag{2}
\end{equation*}
$$

It is believed ${ }^{5}$ that series (2) is Borel-summable away from Stokes-lines,

$$
\operatorname{Im}(w(x))=\text { const. }, \quad w(x)=e^{-\mathrm{i} \arg (\lambda)} \int^{x} d x^{\prime} \sqrt{q\left(x^{\prime}\right)}
$$

Voros symbols $V_{\beta}:=\int_{\beta} d x S_{\text {odd }}(x)$ can be Borel-summable, then representing ingredients of the solution to the BPS-RH-problem.

[^1]Borel summability depends on the topology of Stokes graph formed by Stokes lines (determined by $q_{0} \sim$ point on \mathcal{B}). Two "extreme" cases:

FG Stokes graph triangulation of C

FN Stokes graph $u>$ pants decomposition

In between there exist several hybrid types of graphs.
Case FG: D. Allegretti has proven conjecture of T. Bridgeland: Voros symbols \sim Fock-Goncharov (FG) type coordinates solve BPS-RH problem.

Important: Extension to case FN needed for topological string applications: Case FN: Real ${ }^{6}$ "skeleton" in \mathcal{B}, described by Jenkins-Strebel differentials ${ }^{7}$.

[^2]Second half of our proposal:
There exists a canonical pair $\left(\mathcal{L}_{\Theta}, \nabla_{\Theta}\right)$ consisting of
\mathcal{L}_{Θ} : line bundle on \mathcal{Z}, transition functions: Difference generating functions of changes of coordinates x_{2}
∇_{Θ} : connection on \mathcal{L}_{Θ}, flat sections: Tau-functions $\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \check{x}^{\imath}\right)$, determining $Z_{\text {top }}$ with the help of

$$
\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \check{x}^{2}\right)=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} \mathrm{e}^{2 \pi \mathrm{i}\left(n, \check{x}^{2}\right)} Z_{\mathrm{top}}^{\imath}\left(\mathrm{x}_{\imath}-\mathrm{n}\right) .
$$

This means that there are wall-crossing relations

$$
\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \breve{\mathrm{x}}^{\imath}\right)=F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right) \mathcal{T}_{\jmath}\left(\mathrm{x}_{\jmath}, \check{\mathrm{x}}^{\jmath}\right),
$$

on overlaps $\mathcal{U}_{\imath} \cap \mathcal{U}_{\jmath}$ of charts, with transition functions $F_{\imath \jmath}\left(x_{l}, x_{\jmath}\right)$: difference generating functions, defined by the changes of coordinates $x_{l}=x_{l}\left(x_{\jmath}\right)$.

Difference generating functions:

$$
\mathcal{T}(\mathrm{x}, \check{\mathrm{x}})=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} \mathrm{e}^{2 \pi \mathrm{i}(\mathrm{n}, \check{\mathrm{x}})} Z(\mathrm{x}-\mathrm{n}) \Leftrightarrow\left\{\begin{array}{l}
\mathcal{T}\left(\mathrm{x}, \check{\mathrm{x}}+\delta_{r}\right)=\mathcal{T}(\mathrm{x}, \check{\mathrm{x}}) \tag{3}\\
\mathcal{T}\left(\mathrm{x}+\delta_{r}, \check{\mathrm{x}}\right)=e^{2 \pi \mathrm{i} \check{x}_{r}} \mathcal{T}(\mathrm{x}, \check{\mathrm{x}})
\end{array}\right.
$$

Coordinates considered here are such that $\mathrm{x}_{l}=\mathrm{x}_{2}\left(\mathrm{x}_{j}, \check{x}^{\jmath}\right)$ can be solved for \check{x}^{\jmath} in $\mathcal{U}_{\imath} \cap \mathcal{U}_{j}$, defining $\check{x}^{\jmath}\left(\mathrm{x}_{2}, \mathrm{x}_{j}\right)$. Having defined tau-functions $\mathcal{T}_{l}\left(\mathrm{x}_{l}, \check{x}^{2}\right)$ and $\mathcal{T}_{j}\left(\mathrm{x}_{\jmath}, \check{x}^{\jmath}\right)$ on charts \mathcal{U}_{2} and \mathcal{U}_{j}, respectively, there is a relation of the form

$$
\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \check{\mathrm{x}}^{\imath}\right)=F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right) \mathcal{T}_{\jmath}\left(\mathrm{x}_{\jmath}, \check{\mathrm{x}}^{\jmath}\right)
$$

on the overlaps $\mathcal{U}_{\imath j}=\mathcal{U}_{\imath} \cap \mathcal{U}_{j}$. To ensure that both \mathcal{T}_{\imath} and \mathcal{T}_{j} satisfy the relations (3), $F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right)$ must satisfy

$$
\begin{align*}
& F_{\imath \jmath}\left(\mathrm{x}_{\imath}+\delta_{r}, \mathrm{x}_{\jmath}\right)=e^{+2 \pi \mathrm{i} \mathrm{x}_{r}^{2}} F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right), \tag{4a}\\
& F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}+\delta_{r}\right)=e^{-2 \pi \mathrm{i} \stackrel{x}{\mathrm{x}}_{r}} F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right) . \tag{4b}
\end{align*}
$$

We will call functions $F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{j}\right)$ satisfying the relations (4) associated to a change of coordinates $x_{l}=x_{l}\left(x_{j}\right)$ difference generating functions.

Basic example:

$$
\begin{align*}
& X^{\prime}=\tau(X)=Y^{-1} \\
& Y^{\prime}=\tau(Y)=X\left(1+Y^{-1}\right)^{-2} \tag{5}
\end{align*}
$$

Introduce logarithmic variables $x, y, x^{\prime}, y^{\prime}$,

$$
X=e^{2 \pi \mathrm{i} x}, \quad Y=-e^{2 \pi \mathrm{i} y}, \quad X^{\prime}=-e^{2 \pi \mathrm{i} x^{\prime}}, \quad Y^{\prime}=e^{2 \pi \mathrm{i} y^{\prime}}
$$

The equations (5) can be solved for Y and Y^{\prime},

$$
Y\left(x, x^{\prime}\right)=-e^{-2 \pi \mathrm{i} x^{\prime}}, \quad Y^{\prime}(x, y)=e^{2 \pi \mathrm{i} x}\left(1-e^{2 \pi \mathrm{i} x^{\prime}}\right)^{-2}
$$

The difference generating function $\mathcal{J}\left(x, x^{\prime}\right)$ associated to (5) satisfies

$$
\frac{\mathcal{J}\left(x+1, x^{\prime}\right)}{\mathcal{J}(x, y)}=-\left(Y\left(x, x^{\prime}\right)\right)^{-1}, \quad \frac{\mathcal{J}\left(x, x^{\prime}+1\right)}{\mathcal{J}(x, y)}=Y^{\prime}\left(x, x^{\prime}\right)
$$

A function satisfying these properties is

$$
\mathcal{J}\left(x, x^{\prime}\right)=e^{2 \pi \mathrm{i} x x^{\prime}}\left(E\left(x^{\prime}\right)\right)^{2}, \quad E(z)=(2 \pi)^{-z} e^{-\frac{\pi \mathrm{i}}{2} z^{2}} \frac{G(1+z)}{G(1-z)}
$$

where $G(z)$ is the Barnes G-function satisfying $G(z+1)=\Gamma(z) G(z)$.

Tau-functions as solutions to the secondary RH problem

In arXiv:2004.04585 and work in progress we explain how to define solutions $\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \breve{x}^{2}\right)$ to the secondary RH problem by combining

free fermion CFT with exact WKB.

Key features:

- Proposal covers real slice in \mathcal{B} represented by Jenkins-Strebel differentials using FN type coordinates,
- agrees with topological vertex calculations on the real slice, whenever available,
- and defines canonical extensions into strong coupling regions ${ }^{8}$ (for $C=C_{0,2}$ using important work of Its-Lisovyy-Tykhyy).

Exact WKB for quantum curves fixes normalisation ambiguities \Rightarrow the \hbar-deformation is "as canonical as possible".

[^3]The picture found in the class Σ examples suggests:
The higher genus corrections in the topological string theory on X are encoded in a canonical \hbar-deformation of the moduli space $\mathcal{M}_{\text {cplx }}(Y)$ of complex structures on the mirror Y of X.

There are hints that this picture may generalise beyond the class Σ examples:
(A) Relation to geometry of hypermultiplet moduli spaces - see below
(B) Relation to spectrum of BPS-states, geometry of space of stability conditions (T. Bridgeland)
(C) Relations to spectral determinants (Marino et.al.)?

Take-outs: (see below)

1) Relation classical-quantum
2) Relation with Theta-functions on intermediate Jacobian fibration
3) Interplay between $2 \mathrm{~d}-4 \mathrm{~d}$ wall-crossing and free fermion picture

(A) Relation to geometry to hypermultiplet moduli spaces

A similar characterisation of $Z_{\text {top }}$ follows from the proposal of Alexandrov, Persson, and Pioline (APP) for NS5-brane corrections to the geometry of hypermultiplet moduli spaces:

- SUSY \rightsquigarrow describe quantum corrections using twistor space geometry,

$$
\text { locally } \quad \mathcal{Z} \simeq \mathcal{M}_{\text {cplx }}(Y) \times \mathbb{P}^{1}
$$

having atlas of Darboux coordinates $x_{l}=\left(x_{l}, \breve{x}^{2}\right)$ on \mathcal{Z}.

- Combining mirror symmetry, S-duality, and twistor space geometry \Rightarrow quantum correction from one NS5-brane encoded in locally defined holomorphic functions $H_{\text {NS5 }}\left(\mathrm{x}_{2}, \breve{x}^{2}\right)$ having representation of the form

$$
H_{\mathrm{NS5}}\left(\mathrm{x}_{l}, \breve{\mathrm{x}}^{2}\right)=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} e^{2 \pi \mathrm{i}\left(n, \breve{x}^{2}\right)} K_{\mathrm{NS5}}^{2}\left(\mathrm{x}_{l}-\mathrm{n}\right) .
$$

- Using the DT-GW-relation (MNOP): $K_{\text {NS5 }}^{\imath}\left(\mathrm{x}_{l}\right) \sim Z_{\text {top }}^{\imath}\left(\mathrm{x}_{\imath}\right)$.

This suggests: $\left\{\begin{array}{l}\text { Our results } \rightsquigarrow \text { confirmation of APP-proposal, } \\ \text { APP-framework predicts generalisations of our results. }\end{array}\right.$

1) Relation classical-quantum: The magic formula

$$
\begin{equation*}
\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \check{\mathrm{x}}^{\imath}\right)=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} \mathrm{e}^{2 \pi \mathrm{i}\left(n, \check{x}^{2}\right)} Z_{\text {top }}^{\imath}\left(\mathrm{x}_{\imath}-\mathrm{n}\right) \tag{6}
\end{equation*}
$$

can be interpreted as a relation between an honest quantum deformation of \mathcal{B} and the \hbar-deformation of a classical space discussed in this talk.

The main observation in lorgov-Lisovyy-J.T. was that the transform (6) simultaenously diagonalises all operators in a realisation of the quantised algebra of functions on $\mathcal{M}_{\text {char }}(Y)$ generated by Verlinde loop operators.
In work by Alexandrov-Pioline, it was shown that the wall-crossing relations $\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \check{x}^{l}\right)=F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right) \mathcal{T}_{\jmath}\left(\mathrm{x}_{\jmath}, \check{\mathrm{x}}^{\jmath}\right)$, translate into integral transforms

$$
Z_{\mathrm{top}}^{\imath}\left(\mathrm{x}_{\imath}\right)=\int d \mathrm{x}_{\jmath} K\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right) Z_{\mathrm{top}}^{\jmath}\left(\mathrm{x}_{\jmath}\right)
$$

In view of the relation with Theta-functions (next slide) this is probably best understood in connection with the ideas related to quantisation of the intermediate Jacobian going back to Witten.

2) Relation with Theta-functions on intermediate Jacobian fibration

 Let us use the isomonodromic tau-functions to define $\Theta_{\Sigma_{\hbar}}(\mathrm{a}, \theta ; z ; \hbar)$,$$
\begin{equation*}
\Theta_{\Sigma_{\hbar}}(\mathrm{a}, \theta ; z ; \hbar):=\mathcal{T}(\sigma(\mathrm{a}, \theta ; \hbar), \tau(\mathrm{a}, \theta ; \hbar) ; z ; \hbar), \tag{7}
\end{equation*}
$$

when $d=1, \sigma \equiv x_{\imath}^{1}, \eta \equiv \check{x}_{1}^{2}, \theta=\theta_{1}^{2}$.

Claim

The limit

$$
\begin{equation*}
\log \Theta_{\Sigma}(\mathrm{a}, \theta ; z):=\lim _{\hbar \rightarrow 0}\left[\log \Theta_{\Sigma_{\hbar}}(\mathrm{a}, \theta ; z ; \hbar)-\log \mathcal{Z}_{\mathrm{top}}(\sigma(\mathrm{a}, \theta) ; z ; \hbar)\right] \tag{8}
\end{equation*}
$$

exists, with function $\Theta_{\Sigma}(a, \theta ; z)$ defined in (8) being the theta function

$$
\begin{equation*}
\Theta_{\Sigma}(\mathrm{a} ; \theta ; z)=\sum_{n \in \mathbb{Z}} e^{2 \pi \mathrm{in} \theta} e^{\pi \mathrm{i} n^{2} \tau_{\Sigma}(\mathrm{a})} \tag{9}
\end{equation*}
$$

with $\tau_{\Sigma}(\mathrm{a})$ related to $\mathcal{F}(\mathrm{a}, z)$ by $\tau_{\Sigma}=\frac{1}{2 \pi \mathrm{i}} \frac{\partial^{2} \mathcal{F}}{\partial \mathrm{a}^{2}}$.

3) Interplay between 2d-4d wall-crossing and free fermion picture

 Background Y_{Σ} can be modified to open-closed background by inserting Aganagic-Vafa branes located at points of Σ. Generalisation of the formula$$
\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \breve{\mathrm{x}}^{2}\right) \equiv\left\langle\Omega, \mathfrak{f}_{\psi}\right\rangle=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} \mathrm{e}^{2 \pi \mathrm{i}\left(n, \check{\mathrm{x}}^{2}\right)} Z_{\mathrm{top}}^{\imath}\left(\mathrm{x}_{\imath}-\mathrm{n}\right)
$$

due to lorgov-Lisovyy-J.T. will then relate free fermion expectation values

$$
\Psi(x, y)=\langle\langle\bar{\psi}(x) \psi(y)\rangle\rangle=\frac{\left\langle\Omega, \bar{\psi}(x) \psi(y) \mathfrak{f}_{\psi}\right\rangle}{\left\langle\Omega, \mathfrak{f}_{\psi}\right\rangle}
$$

to expectation values of degenerate fields of the Virasoro algebra, representing the fermions of Aganagic-Dijkgraaf-Klemm-Marino-Vafa in our context.

Noting that $\Psi(x, y)$ represents the solution to the classical RH-problem associated to the tau-function $\mathcal{T}_{\imath}=\left\langle\Omega, \mathfrak{f}_{\psi}\right\rangle$ one sees that:
relation between classical RH-problem to BPS-RH problem: Example for 4d-2d wall crossing (GMN).

Exact WKB fixes the normalisations for $\Psi(x, y)$, via $4 d-2 d$ wall crossing determining the normalisations of \mathcal{T}_{\imath}.

[^0]: ${ }^{1}$ Aganagic, Klemm, Marino, Vafa
 ${ }^{2}$ Moore-Nekrasov-Shatashvili; Losev-Nekrasov-Shatashvili; Nekrasov
 ${ }^{3}$ Dijkgraaf-Hollands-Sulkowski-Vafa [DHSV] using Maulik-Nekrasov-Okounkov-Pandharipande [MNOP]
 ${ }^{4}$ Gamayun-lorgov-Lisovyy; lorgov-Lisovyy-J.T.

[^1]: ${ }^{5}$ Probably proven by Koike-Schäfke (unpublished), and by Nikolaev (to appear).

[^2]: ${ }^{6}$ Real values of \hbar and special coordinates a_{\imath}^{r}
 ${ }^{7}$ Stokes graphs decompose C into ring domains

[^3]: ${ }^{8}$ In the sense of Seiberg-Witten theory

