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Why is this cool?

N-partite state
N−1⊕

k=0

Hk [N-partite state]

Hk [N-partite state] =
{

tuples of (k + 1)-body operators
exhibiting correlations

}/
{ trivial

correlations}, k < N − 1

Hk(ψ1 ⊗ · · · ⊗ ψN) = 0, k < N − 1

[(|0A〉 〈0A| , |0B〉 〈0B|)] ∈ H0(|0A0B〉+ |1A1B〉)

[(rA, rB)] ∈ H0(ρ̂AB)⇐⇒ Tr[ρ̂ABx(rA ⊗ 1B − 1A ⊗ rB)] = 0, ∀x ∈ B(HAB)︸ ︷︷ ︸
rA∼

AB
rB

“rA and rB are maxmly. correlated”
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1-cochains for a tripartite state

ψ ∈ HA ⊗HB ⊗HC

A B

C

rBC

rAB
rAC

[(rAB, rAC, rBC)] ∈ H1(ψ)⇐⇒ r̃BC + r̃AB ∼
ABC

r̃AC
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1-cochains for the GHZ state

ψ = |GHZ3〉 = |0A0B0C〉+ |1A1B1C〉 ∈ HA ⊗HB ⊗HC

A B

C

−|0A0B〉〈1A0B|+

−|1A0B〉〈0A0B|

|0B0C〉〈1B1C|+

+|1B1C〉〈0B0C|
|0A0C〉〈1A0C|+

+|1A0C〉〈0A0C|
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Why is this cool?

Cohomology has advantages over mutual information

I2[bipartite state
on {A, B} ] = SA + SB − SAB ∈ R≥0

Measures how much information is shared by A and B.

Multipartite mutual information:

In =
∑

T⊆P
(−1)|T |ST ∈ R

Is a (sometimes unreliable) measure of information shared by every T ⊆ P.

I3[|000〉+ |111〉] = I3[|001〉+ |010〉+ |100〉] = 0

while for • = 0, 1

H•[|000〉+ |111〉] 6= 0,

H•[|001〉+ |010〉+ |100〉] 6= 0
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Mutual Info. as an Euler Char. (kinda...it’s better)

N-partite state Geom[N-partite
state ]

Geom[N-partite
state ]

Euler Char.−−−−−−→ State Index[N-partite
state ] ∈ O(Cα × Cq × Cr )︸ ︷︷ ︸

Holomorphic functions
in 3-parameters

;
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Mutual Info. as an Euler Characteristic (kinda...it’s better)

State Index ∈ O(Cα × Cq × Cr )

Tsallis/Rényi Deformed Mutual Information
∈ O(Cq × Cr )

Mutual Information ∈ R

Euler Characteristics of Complexes of
Vector Spaces ∈ Z

α
→

0

×
1

r(
q−

1)

q → 1

q →
0

α, r ∈ Z
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Mutual Info. as an Euler Characteristic (kinda...it’s better)

We should think of

I3[|000〉+ |111〉] = I3[|001〉+ |010〉+ |100〉] = 0

while for • = 0, 1

H•[|000〉+ |111〉] 6= 0,

H•[|001〉+ |010〉+ |100〉] 6= 0

as analogous to how Euler(Compact 3-Manifold) = 0 while cohomology
can be non-vanishing.

Cohomology can detect how things are glued together, Euler
characteristics only count how many things are glued together.

9



Mutual Info. as an Euler Characteristic (kinda...it’s better)

We should think of

I3[|000〉+ |111〉] = I3[|001〉+ |010〉+ |100〉] = 0

while for • = 0, 1

H•[|000〉+ |111〉] 6= 0,

H•[|001〉+ |010〉+ |100〉] 6= 0

as analogous to how Euler(Compact 3-Manifold) = 0 while cohomology
can be non-vanishing.

Cohomology can detect how things are glued together, Euler
characteristics only count how many things are glued together.

9



Before We Define Things

This is a talk about structures in basic Quantum Mechanics (or
probability theory).

No a priori geometry on the set of subsystems/tensor factors.
Geometry is emergent.

The generality suggests something deep is to be learned.

Possibly new link invariants: L ⊂ S3 a link with N-components;1

ψL := ZCS[S3 − L] ∈ ZCS[T]⊗N

Corresponding cohomology, Poincaré polynomials, and state indices
are frame-equivariant/independent link invariants.

1Based on conversations with Greg Moore. See work of Salton-Swingle-Walter
1611.01516 and Balasubramanian, et. al.: 1801.01131.

10

https://arxiv.org/abs/1611.01516
https://arxiv.org/abs/1801.01131
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Closely Related Work

• Baez-Fritz-Leinster: Entropy as a Functor.

• P. Baudot and D. Bennequin: The Homological Nature of Entropy.
Mutual information (and their Tsallis q-deformations) arise as
non-trivial cochains of some complex of functions on spaces of
probability measures. J.P. Vigneaux provides an excellent exposition
in 1709.07807.

• Drummond-Cole, Park, and Terilla: Homotopy probability theory.
A∞/L∞-techniques applied to probability theory.

11
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What’s a state?

“state” = (normal) positive linear functional on a

“von Neumann algebra”︷ ︸︸ ︷
W ∗-algebra R.

ρ : R −→ C

Algebra R
of Random Variables

State ρ

BH ρ(r) = TrH[ρ̂r ]

FunC(Ω) ∼= C|Ω| ρ(f ) =
∑

ω∈Ω µω︸︷︷︸
µ:Ω−→R≥0

f (ω)

L∞(X) ρ(f ) =
∫
X
fdµ

∏n
i=1 End(Hi ) ρ(r1, · · · , rn) =

∑
i TrHi

[ρ̂(i)ri ]

State on∏
i End(Hi )↔

Tuple of density states
(ρ̂(1), · · · , ρ̂(n))

State on∏n
i=1 C ↔

Tuple of non-negative reals
(µ(1), · · · , µ(n))
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What’s a Bipartite State? (roughly)

“bipartite state” =
RA, RB a pair of algebras

+
ρ : RA ⊗ RB −→ C a state

︸ ︷︷ ︸
ρAB

We have homomorphisms

εA : RA −→ RA ⊗ RB εB : RB −→ RA ⊗ RB

a 7−→ a⊗ 1 b 7−→ 1⊗ b

Giving us the reduced states (“partial traces”/“partial measures”)

ρA := ρ ◦ εA : RA −→ C ρB := ρ ◦ εB : RB −→ C
a 7−→ ρ(a⊗ 1) b 7−→ ρ(1⊗ b)
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What is Factorizability?

Bipartite ρ is factorizable if ρ(1)ρ = ρA ⊗ ρB.

ψ ∈ HA ⊗ HB

is factorizable
TrHA⊗HB

[ψ ⊗ ψ∨(−)]
is factorizable

µ : X × Y −→ [0, 1]
a probability measure describes
independent random variables.

its expectation value
is factorizable
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What’s a Multipartite State?

“multipartite state” “=”
(Rp)p∈P tuple of algebras

+
ρ :

⊗
p∈P Rp −→ C a state

︸ ︷︷ ︸
ρP

For any subset T ⊆ P we have algebras RT :=
⊗

t∈T Rt (R∅ = C), and
maps

εT : RT −→ RP

Define the reduced states

ρT := ρ ◦ εT : RT → C

15



What’s a Multipartite State?

“multipartite state” “=”
(Rp)p∈P tuple of algebras

+
ρ :

⊗
p∈P Rp −→ C a state︸ ︷︷ ︸

ρP

For any subset T ⊆ P we have algebras RT :=
⊗

t∈T Rt (R∅ = C), and
maps

εT : RT −→ RP

Define the reduced states

ρT := ρ ◦ εT : RT → C

15



Everything is a local automorphism invariant

Because everything in this talk is functorial, all interesting quantities
associated to a multipartite state ρ :

⊗
p∈P Rp −→ C are invariant (or

equivariant) under “local automorphisms”:

ρ 7−→ ρ ◦
⊗

p∈P
Ap,

where (Ap : Rp −→ Rp)p is a collection of algebra automorphisms.

E.g. for
pure states this includes local unitary transformations.

ψ 7−→ U1 ⊗ · · · ⊗ Unψ.

16
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Why Geometry? Homological Obstructions, that’s why

ρ : RA ⊗ RB −→ C

Factorizability

Descent of data to subsystems:
all global data comes from gluing
local data: ρ(

∑
ij r

i
A ⊗ rjB) =

1
ρ(1)

∑
ij ρA(r

i
A)ρB(r

j
B).

Failure to Factorize
Obstruction to descent: ρ(rA⊗rB) 6=

1
ρ(1)ρA(rA)ρB(rB) for some (rA, rB)

17
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∑
ij r

i
A ⊗ rjB) =

1
ρ(1)

∑
ij ρA(r

i
A)ρB(r

j
B).

Failure to Factorize
Obstruction to descent: ρ(rA⊗rB) 6=

1
ρ(1)ρA(rA)ρB(rB) for some (rA, rB)
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Why? Because Mutual Info. Looks Like an Euler Char.

Mutual Information:

I (ρAB) = S(ρA) + S(ρB)− S(ρAB) ∈ R≥0

States on
∏n

i=1 End(Hi )←→





(ρ̂(1), · · · , ρ̂(n))︸ ︷︷ ︸
tuple of density states





S [(ρ̂(1), · · · , ρ̂(n))] := −
n∑

i=1

Tr[ρ̂(i) log ρ̂(i)],

When
∑

i Tr[ρ̂i ] = 1.

18
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Why? Because Mutual Info. Looks Like an Euler Char.

Mutual Information:

I (ρAB) = S(ρA) + S(ρB)− S(ρAB) ∈ R≥0

Multipartite Mutual information:

I (ρP) =
∑

T⊆P
(−1)|T |−1S(ρT ) ∈ R

I (ρQ ⊗ ρS) = 0

Non-vanishing N-partite mutual information ⇒ no system can “decouple”

6⇐N≥3

(Try α |0A0B0C〉+
√

1− α2 |1A1B1C〉 for any α ∈ C).
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Why? Because Mutual Info. Looks Like an Euler Char.

I (ρ
P

) =
∑

T⊆P
(−1)|T |−1S(ρT )

=
∑

k=0

(−1)k−1


 ∑

|T |=k+1

S(ρT )




︸ ︷︷ ︸
“dim[Geomk (ρP)]”

Geom(ρP) =
N−1⋃

k=0

Geomk(ρP)
︸ ︷︷ ︸

Encodes all data about
{ρT }|T |=k+1

20
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What’s an Euler Characteristic?

C a sufficiently nice category of geometric objects: a ⊗-category with an
ability to glue objects (all pushouts)

An Euler characteristic (valued in a ring D) is an assignment that takes in
any object X of C and outputs χ(X ) ∈ D such that:

• χ(X ) only depends on X up to iso.

• χ(X ⊗ Y ) = χ(X )χ(Y )

• χ(X
∐
Z

Y ) = χ(X ) + χ(Y )− χ(Z )︸ ︷︷ ︸
Doesn’t care about

gluing details along Z

An Euler characteristic valued in D is a homomorphism

χ : K0(C)→ D

21
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What is an Euler Characteristic

Category Euler Characteristic

Finite Sets Cardinality

Finite Vector Spaces Dimension

Bounded Graded Vector Spaces χ(V •) =
∑

l(−1)l dimV l

Bounded cochain complexes χ(C •) =
∑

l(−1)l dimC l

Pairs (V , f ) of a vector space
and an endomorphism f : V −→ V dimn(V , f ) = Tr(f n), n ∈ Z≥1

Pairs (V •, f •) of a (bdd.) graded vector space
and a degree 0 endomorphism f : V • −→ V • dimn(V •, f •) =

∑
k(−1)k TrV k [(f (k))n]

22
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The Euler Characteristic of a Multipartite State

Suppose there is a category of multipartite states with isomorphisms given
by local automorphisms. Assume ρP 7−→ Geom(ρP) is a tautological
equivalence (or duality) of categories.

χ(ρP) = χ
[
Geom(ρP)

]

ρAB = ρA

∐

ρAB

ρB

︸ ︷︷ ︸
Glue together unipartite states

to make a bipartite state

χ(ρAB) = χ(ρA) + χ(ρB)− χ(ρAB)

Can repeat recursively for N-partite states

χ(ρP) =
∑

∅6=T⊆P

(−1)|T |−1 χ(ρT )︸ ︷︷ ︸
Euler characteristic
of unipartite state
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The Euler characteristic of a unipartite state

χ(ρP) =
∑

∅6=T⊆P

(−1)|T |−1 χ(ρT )︸ ︷︷ ︸
Euler characteristic

of
unipartite state

Define

dim(ρ) = χunipartite(ρ).

χ(ρP ⊗ ρQ) = χ(ρP)χ(ρQ)⇒

dim(ρ⊗ ϕ) = dim(ρ) dim(ϕ).

dim(ρ) = S(ρ) does not satisfy this! dim(ρ) = eS(ρ) has its owns set of
subtle issues as well!
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The Euler characteristic of a unipartite state

For density states on finite dimensional Hilbert spaces we can take dim to
be valued in O(C3) (everywhere holomorphic functions in three
parameters) with:

dimα,q,r [(H, ρ̂)] = {dim(H)α Tr[(ρ̂)q]}r

Extend to any state on a finite dimensional algebra
∏n

i=1 End(Hi ) via

dim[((H1, ρ̂
(1)), · · · , (Hn, ρ̂

(n)))︸ ︷︷ ︸
“�n

i=1 ρ̂
(i)”

] =
∑

i

dim[(Hi , ρ̂
(i))].

25



Multipartite Information From the State Index

We define the State Index X:

Xα,q,r (ρP) = −[dim(ρ∅)︸ ︷︷ ︸
ρ(1)qr1

+χ(ρP)]

For a density state:

Xα,q,r (ρP) =
∑

∅⊆T⊆P

(−1)|T | dim(HT )α [Tr(ρ̂T )q]r

It obeys the nice relation

X(ρ̂P ⊗ ρ̂Q) = X(ρ̂P)X(ρ̂Q)

And rescalings capture deformed mutual information:

X0,q,r (ρ̂P)

r(1− q)
=

∑

∅6=T⊆P

(−1)|T |−1 STR
q,r (ρ̂T )
︸ ︷︷ ︸
(1−Tr[ρqT ])r

with q −→ 1 recovering mutual information.
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Euler characteristics of complexes of vector spaces?

State Index:
Xα,q,r (ρ̂P) :=

∑
∅⊆T⊆P(−1)|T | dim(HT )α [Tr(ρ̂T )q]r

Tsallis/Rényi Deformed Mutual Information:
Iq,r (ρ̂P) =

∑
T⊆P(−1)|T |−1STR

q,r (ρ̂T )

Mutual Information:
I (ρ̂P) =

∑
T⊆P(−1)|T |−1SvN(ρ̂T ) ∈ R

∑
∅⊆T⊆P(−1)|T | dim(HT )α rank(ρ̂T )r ∈ Z

q →
0

α, r ∈ Z
α
→

0

×
1

r(
q−

1)

q → 1

q →
0

27



The GNS Construction Assigns Vector Spaces to States

Recall the GNS construction:

ρ : R → C GNSR7−−−→ L2
ρ[R/Iρ]

where: Iρ = {r ∈ R : ρ(r∗r) = 0} ≤ R.

• R = FunC(Ω)⇒ GNS(ρ) ∼= Fun(Ωµ 6=0)

• In finite dimensions: GNS(ρ) ∼= H⊗ Image(ρ)∨. So
dimC GNS(ρ) = n rank(ρ) = n1 Tr[ρ̂0]1 = dim1,0,1(ρ̂).

28



The GNS Construction Assigns Vector Spaces to States

Recall the GNS construction:

ρ : R → C GNSR7−−−→ L2
ρ[R/Iρ]

where: Iρ = {r ∈ R : ρ(r∗r) = 0} ≤ R.

• R = FunC(Ω)⇒ GNS(ρ) ∼= Fun(Ωµ 6=0)

• In finite dimensions: GNS(ρ) ∼= H⊗ Image(ρ)∨. So
dimC GNS(ρ) = n rank(ρ) = n1 Tr[ρ̂0]1 = dim1,0,1(ρ̂).

28



The GNS Functor2

GNS : Stateop︸ ︷︷ ︸
category of

unipartite states

−→ Rep

State Rep

Objects (R, ρ) Algebras and “left modules”
(R, RM)

Morphisms
(pre)duals of algebra maps
playing nicely with states

“partial traces”

Algebra maps + intertwiners
playing nicely together

(co)products Coproduct: Classical sum
(A, ρ) � (B, ϕ) = (A× B, ρ× ϕ)

Products
(A,M)× (B,N) =

(A ×B,M × N)

GNS(ρ→ ϕ) = “Radon-Nikodym Derivative/Relative Modular flow”

GNS(�) = ×

2Related to a refinement of independent work by Arthur J. Parzygnat: 1609.08975. 29

https://arxiv.org/abs/1609.08975
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(Non-Comm.) Geometry from a Multipartite State

A multipartite state over a finite set P is a functor

ρ : Subsets(P)op −→ State

T 7−→ (RT , ρT )

(T ⊆ U) 7−→ [(−)⊗ 1U\T : RT → RU ]∧
︸ ︷︷ ︸

“partial trace over U\T”

: ρU −→ ρT

Can make this covariant using complementation on sets, then use Čech
theory to construct a “simplicial state”

ρ∅︸︷︷︸
(C,ρ(1))

←− �
|T |=1

ρT
←−
←−�
|T |=2

ρT
←−
←−
←−
· · ·

←−
←−

...
←−︸︷︷︸

N − 1 arrows

�
|T |=N−1

ρT

←−
←−

...
←−︸︷︷︸

N arrows
“partial traces”

ρP
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A multipartite state over a finite set P is a functor

ρ : Subsets(P)op −→ State

T 7−→ (RT , ρT )

(T ⊆ U) 7−→ [(−)⊗ 1U\T : RT → RU ]∧
︸ ︷︷ ︸

“partial trace over U\T”

: ρU −→ ρT

Can make this covariant using complementation on sets, then use Čech
theory to construct a “simplicial state”
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(Non-Comm.) Geometry from a Multipartite State

Geom(ρP) = ρ∅︸︷︷︸
(C,ρ(1))

←− �
|T |=1

ρT
←−
←− · · ·

←−
←−

...
←−︸︷︷︸

N − 1 arrows

�
|T |=N−1

ρT

←−
←−

...
←−︸︷︷︸

N arrows
“partial traces”

ρP

Geomk(ρP) = �
|T |=k+1

ρT

χ[Geomk(ρ̂P)] =
N−1∑

k=−1

(−1)k dim


 �
|T |=k+1

ρ̂T


 = −X(ρ̂P)
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(Non-Comm.) Geometry from a Multipartite State

ρ∅ ←− �
|T |=1

ρT
←−
←−�
|T |=2

ρT
←−
←−
←−
· · ·
←−
←−

...
←−

�
|T |=N−1

ρT

←−
←−

...
←−
ρP

GNS(ρ∅)︸ ︷︷ ︸
CC

−→
∏

|T |=1

GNS(ρT )−→−→
∏

|T |=2

GNS(ρT )
−→
−→
−→
· · ·
−→
−→

...
−→

∏

|T |=N−1

GNS(ρT )

−→
−→

...
−→

GNS(ρP)

GNS

0→ C d−1

−→
∏

|T |=1

GNS(ρT )
d0

−→
∏

|T |=2

GNS(ρT )
d1

−→ · · · d
N−2

−→
∏

|T |=N−1

GNS(ρT )
dN−1

−→ GNS(ρP)→ 0

Forget Algebra
+Alternating sum

of arrows
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Cohomology from a Multipartite State

0→ C d−1

−→
∏

|T |=1

GNS(ρT )
d0

−→
∏

|T |=2

GNS(ρT )
d1

−→ · · · d
N−2

−→
∏

|T |=N−1

GNS(ρT )
dN−1

−→ GNS(ρP)→ 0

For a bipartite state:

0→ C λ 7→λ(1,1)−−−−−−→ GNS(ρA)× GNS(ρB)︸ ︷︷ ︸
degree 0

(a,b) 7→[1⊗b−a⊗1]−−−−−−−−−−−→ GNS(ρAB)︸ ︷︷ ︸
degree 1

→ 0

H0[ρ
AB

] = {(a, b) : 0 = ρAB[x(a⊗ 1− 1⊗ b)] for all x ∈ RA × RB}

H0 for a pure bipartite state is given in terms of the Schmidt
decomposition. Let S be the Schmidt rank.

dimH0 = S2 − 1

dimH1 = (dimHA − S)(dimHB − S)︸ ︷︷ ︸
“measure of maximal entanglement”

33



Cohomology from a Multipartite State

0→ C d−1

−→
∏

|T |=1

GNS(ρT )
d0

−→
∏

|T |=2

GNS(ρT )
d1

−→ · · · d
N−2

−→
∏

|T |=N−1

GNS(ρT )
dN−1

−→ GNS(ρP)→ 0

For a bipartite state:

0→ C λ 7→λ(1,1)−−−−−−→ GNS(ρA)× GNS(ρB)︸ ︷︷ ︸
degree 0

(a,b) 7→[1⊗b−a⊗1]−−−−−−−−−−−→ GNS(ρAB)︸ ︷︷ ︸
degree 1

→ 0

H0[ρ
AB

] = {(a, b) : 0 = ρAB[x(a⊗ 1− 1⊗ b)] for all x ∈ RA × RB}

H0 for a pure bipartite state is given in terms of the Schmidt
decomposition. Let S be the Schmidt rank.

dimH0 = S2 − 1

dimH1 = (dimHA − S)(dimHB − S)︸ ︷︷ ︸
“measure of maximal entanglement”

33



Cohomology from a Multipartite State

0→ C d−1

−→
∏

|T |=1

GNS(ρT )
d0

−→
∏

|T |=2

GNS(ρT )
d1

−→ · · · d
N−2

−→
∏

|T |=N−1

GNS(ρT )
dN−1

−→ GNS(ρP)→ 0

For a bipartite state:

0→ C λ 7→λ(1,1)−−−−−−→ GNS(ρA)× GNS(ρB)︸ ︷︷ ︸
degree 0

(a,b) 7→[1⊗b−a⊗1]−−−−−−−−−−−→ GNS(ρAB)︸ ︷︷ ︸
degree 1

→ 0

H0[ρ
AB

] = {(a, b) : 0 = ρAB[x(a⊗ 1− 1⊗ b)] for all x ∈ RA × RB}

H0 for a pure bipartite state is given in terms of the Schmidt
decomposition. Let S be the Schmidt rank.

dimH0 = S2 − 1

dimH1 = (dimHA − S)(dimHB − S)︸ ︷︷ ︸
“measure of maximal entanglement”

33



Simplicial Complexes for Measures on a Finite Set

For multipartite measures on a finite set, the GNS representation can
be made into another commutative W ∗-algebra.

We can take spec to recover a set from each algebra;

The result is a simplicial set/simplicial complex.

The state index is a deformation the Euler characteristic of this
complex that takes into account the “sizes” of each simplex (given by
the measure).
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Multipartite Measures and Commutative Geometry
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Summary

• Mutual information (and its deformations) of a multipartite state
emerge naturally from the Euler characteristic (the “state index”) of
some canonically associated non-commutative space.

• In the world of probability measures this space is a simplicial complex.

• The precise operators/random variables capturing non-local
correlations are captured by cohomology.

• Cohomology can detect how things are glued together, Euler
characteristics only count how many things are glued together:
cohomology is a finer invariant than mutual information!
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Other Comments

• There is a G -equivariant generalization of the state index:
“G -equivariant mutual info/entropy”?

• The category of states is a small part of the story between
equivalence of 2-categories through the Kasparov construction:

{ C∗/W Algebras
and Completely Positive maps} ←→ {

C∗/W Algebras
and (pointed) Hilbert Bimodules}

• As a substory of this equivalence, in work3 with Roman Geiko and
Greg Moore we are exploring an equivalence of categories:

{Matrix Product States} ←→ {Completely Positive Maps}

In order to provide insight into how open-closed 2D topological field
theories emerge as EFTs of 1D lattice systems ).

3Inspired largely by work of Verstraete and Kapustin-Turzillo-Yau
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A Sample of Future Directions

• Do things become nice for states arising from holography? Quantum
Code states (c.f. Pastawksi-Yoshida-Harlow-Preskill)?

• Would cohomology class representatives encoding multipartite
non-local correlations be useful for quantum information theorists?

• Generalization of the geometric interpretation of strong subaddivity
using the Ryu-Takayanagi formula (Headrick-Takayanagi) beyond
holographic states?

• Link invariants.

• Generalizations of Poincaré polynomials to holomorphic functions:
much finer numerical invariants than mutual information!

• Full understanding of the infinite dimensional story and its
connections to (relative) modular flow/Tomita-Takesaki theory,
non-commutative Lp-spaces, etc.

• I’m looking for other applications!
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Software

Software computing cohomology/Poincaré polynomials is available at
github.com/tmainero.

Phase 1

Insert N-partite Density
State ρ̂{1,··· ,N} ∈
Dens(

⊗N
i=1Hi )

Phase 2

?

Phase 3

Profit:
Degree N − 1 poly-

nomials with positive
integer coefficients

39
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(Bonus Slide!) Commutative Geometry from a Measure

40



(Bonus Slide!) Commutative Geometry from a Measure

40



(Bonus Slide!) Commutative Geometry from a Measure

40



(Bonus Slide!) Commutative Geometry from a Measure

40



(Bonus Slide!) Commutative Geometry from a Measure

40



(Bonus Slide!) Commutative Geometry from a Measure

40



(Bonus Slide!) The GNS Functor on an Algebra

The GNS representation for states on an algebra A is a functor:

GNSA : StateA → RepA

StateA RepA

Objects Positive linear funls
ρ : R −→ C ∗-representations of A

Morphisms
ρ −→ ϕ
m

ρ ≤ Cϕ for some C > 0
(bounded) intertwiners

41



(Bonus Slide!) The Category of States
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(Bonus Slide!) The Category of States (Again)

GNS : Stateop −→ Rep

State Rep

Objects (R, ρ) Algebras and “left modules”
(R, RM)

Morphisms
“preduals” of algebra maps
playing nicely with states

“partial traces”

Algebra maps + intertwiners
playing nicely together

(co)products Classical sum
(A, ρ) � (B, ϕ) = (A× B, ρ× ϕ)

Products
(A,M)× (B,N) =

(A ×B,M × N)

GNS(ρ→ ϕ) = “Radon-Nikodym Derivative/Relative Modular flow”

GNS(�) = ×
43
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