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N—1
N-partite state vVV\* @ H* [N-partite state]
k=0

exhibiting correlations correlations

Hk [N—partite state] _ {tuples of (k + 1)-body operators} /{ trivial }7 k< N-—1
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N—1
N-partite state vVV\* @ H* [N-partite state]
k=0

k . les of (k + 1)-bod ivi
H [N—partlte State] = {tup ese::higiting ()zor?elztg);:]esrators} /{cor'frrell\{ewl'?ilc)ns}v k<N-1
H(pr @ - @9n) =0,k < N -1

[(10a) (0al ,108) (08])] € H°(|0AOB) + |1a18))

[(rA, rB)] S HO(,Z)\AB) <~ Tr[ﬁABx(rA ®R1g— 1A ® rB)] =0, Vx e B(HAB)



Why is this cool?

N-partite state vVV\*

Hk [N—partite state] _ {tuples of (k + 1)-body operators} /{ trivial }’ k< N-—1

exhibiting correlations correlations

H (1@ @) =0, k < N —1
[(10a) (0al ,108) (08])] € H°(|0AOB) + |1a18))

[(rA, rB)] € HO(ﬁAB) < Tr[ﬁABx(rA RIg—1A® rB)] = 07 Vx € B(HAB)

ra~rg
AB
“ra and rg are maxmly. correlated”




P € Ha® Hg ® He

C

A B

[(raB, rac, r8c)] € H' (1) <=> Tac + Tag e Tac



1 = |GHZ3) = |0a080¢) + |1alglc) € Ha @ Hp ® Hc

C

[0g0c)(1glc|+
+/181c)(0g0c|

[0A0c){1A0c |+
+[1a0¢)(0a0c|
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Why is this cool?

Cohomology has advantages over mutual information

Ll o (n By 1= Sa + S — Sas € Rxo

Measures how much information is shared by A and B.

Multipartite mutual information:

h=>Y (-1)"lsreRr

TCP

Is a (sometimes unreliable) measure of information shared by every T C P.
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Why is this cool?

Cohomology has advantages over mutual information

Ll o (n By 1= Sa + S — Sas € Rxo

Measures how much information is shared by A and B.

Multipartite mutual information:

h=>Y (-1)"lsreRr

TCP
Is a (sometimes unreliable) measure of information shared by every T C P.
13[|000) + |111)] = K[|001) + |010) + |100)] =0
while for ¢ =0, 1

H*[|000) + |111)] # 0,
H*[|001) -+ |010) + [100)] # 0

6



N-partite state VV\* Geom|[V-partite

ite1 Euler Char. ;
Geom[V:partite] 2= =50, State Index|[VRartite] € O(C, x Cq x C,);

gl R
Holomorphic functions
in 3-parameters



State Index € O(C, x Cq x C;)

Q
A
A7
&
Tsallis/Rényi Deformed Mutual Information Euler Characteristics of Complexes of
€ O(Cq x Cy) Vector Spaces € Z

qg—1

Mutual Information € R



Mutual Info. as an Euler Characteristic (kinda...it's better)

We should think of
5[|000) + |111)] = K[|001) + |010) + |100)] =0
while for e =0, 1

H*[|000) + |111)] # 0,
H*[|001) + |010) + [100)] # 0

as analogous to how Euler(Compact 3-Manifold) = 0 while cohomology
can be non-vanishing.
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This is a talk about structures in basic Quantum Mechanics (or
probability theory).
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https://arxiv.org/abs/1611.01516
https://arxiv.org/abs/1801.01131

This is a talk about structures in basic Quantum Mechanics (or
probability theory).

No a priori geometry on the set of subsystems/tensor factors.
Geometry is emergent.
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This is a talk about structures in basic Quantum Mechanics (or
probability theory).

No a priori geometry on the set of subsystems/tensor factors.
Geometry is emergent.

The generality suggests something deep is to be learned.
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Before We Define Things

This is a talk about structures in basic Quantum Mechanics (or
probability theory).

No a priori geometry on the set of subsystems/tensor factors.
Geometry is emergent.

The generality suggests something deep is to be learned.
Possibly new link invariants: L C S3 a link with N-components;?
V1= Zcs[S® - L] € Zcs[T]*N

Corresponding cohomology, Poincaré polynomials, and state indices
are frame-equivariant/independent /link invariants.

!Based on conversations with Greg Moore. See work of Salton-Swingle-Walter
1611.01516 and Balasubramanian, et. al.: 1801.01131.
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Closely Related Work

e Baez-Fritz-Leinster: Entropy as a Functor.

e P. Baudot and D. Bennequin: The Homological Nature of Entropy.
Mutual information (and their Tsallis g-deformations) arise as
non-trivial cochains of some complex of functions on spaces of
probability measures. J.P. Vigneaux provides an excellent exposition
in 1709.07807.

e Drummond-Cole, Park, and Terilla: Homotopy probability theory.
Aco/ Loo-techniques applied to probability theory.

11
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“von Neumann algebra”

“state” = (normal) positive linear functional on a W*-algebra R.
p:R—C
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“von Neumann algebra”
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“state” = (normal) positive linear functional on a W*-algebra R.
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“state” = (normal) positive linear functional on a W*-algebra R.

“von Neumann algebra”

p:R—C
of Random Variables | State
BH p(r) = Trulpr]
Func(®) = € | p(f) = Teq o ()
—~

L>(X)

[LZQ—)RZO

p(f) = fx fdp

12



What's a state?

“von Neumann algebra”

“state” = (normal) positive linear functional on a W*-algebra R.
p:R—C

Algebra R
of Random Variables

State p

BH
Func(Q) = Cl®

L>°(X)
[17-1 End(#;)
State on
Hi End(’H,')

p(r) = Try[pr]

() =2eq fo f(w)
~~
w:2—R>g

p(f) = [x fdn
pre, - ) = 30 Tra [p0]

Tuple of density states
(B, 7



What's a state?

“von Neumann algebra”

“state” = (normal) positive linear functional on a W*-algebra R.

Algebra R
of Random Variables

p:R—C
State p

BH
Func(Q) = Cl®

p(r) = Try[pr]

) = Tocq o F()

w:2—R>g
L%2(X) p(f) = Jx fdu
[Ty End(H) | (o o) = 5 T [0
State on Tuple of density states
[T End(H) <7 (@0, . 50)
Stante on Tuple of non-negative reals

i=1

(u®, -l



- . " Ra, Rg a pair of algebras
bipartite state” = +
p: Ra ® Rg — C a state
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- . " Ra, Rg a pair of algebras
bipartite state” =
p: Ra ® Rg — C a state

paB

We have homomorphisms

€n: Rn — RA® Rp eg: Re — RA® Rp
ar—a®l br—1®b
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What's a Bipartite State? (roughly)

- . " Ra, Rg a pair of algebras
bipartite state” =
p: Ra ® Rg — C a state

paB
We have homomorphisms
ep s Ran — Ra ® R eg : Re — Ra ® R
ar—a®l b—1®b

Giving us the reduced states (“partial traces” / “partial measures”)

pA;:poeA;RA—>(C pB::pOEBZRB—>C
ar— pla®1) br— p(1® b)

13



Bipartite p is factorizable if p(1)p = pa ® pg.
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Bipartite p is factorizable if p(1)p = pa ® pg.
Y € Ha ® Hp Traaens[ @ ¥V (=)]
is factorizable @ is factorizable

w: X xY — [0,1]

a probability measure describes @ its gxpectat_lon value
. . is factorizable
independent random variables.
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. . is factorizable
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(Rp)pep tuple of algebras

“multipartite state” “=
P P Qpecp Ro — C astate
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. . (Rp)pep tuple of algebras
“multipartite state” “="
P Qpecp Ro — C astate

J/

-~

P_P

For any subset T C P we have algebras Rt := @, Rt (Ry = C), and
maps

€T . RT — Rp
Define the reduced states

pT:=pO€T:RT—>C

15



Everything is a local automorphism invariant

Because everything in this talk is functorial, all interesting quantities
associated to a multipartite state p : ®p€P R, — C are invariant (or
equivariant) under “local automorphisms”:

p»—)po®Ap,
peP

where (A, : Ry — Rp)p is a collection of algebra automorphisms.
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Everything is a local automorphism invariant

Because everything in this talk is functorial, all interesting quantities
associated to a multipartite state p : ®p€P R, — C are invariant (or
equivariant) under “local automorphisms”:

p»—)po®Ap,
peP

where (Ap : Ry — Rp)p is a collection of algebra automorphisms. E.g. for
pure states this includes local unitary transformations.

w'—>Ul®®Un¢

16



Why Geometry? Homological Obstructions, that's why

p:RyA®Rg — C

Descent of data to subsystems:

— all global data comes from gluing
( Factorizability JJ\/\/\/\> local data: p(zij r}"\ ® T.JB) _
ﬁ 2 pa(ra)pe(rg)-

- - Obstruction to descent: p(ra®rg) #
( Failure to Factorize )"\/\/\/\> ﬁPA(TA)PB(TB) for some (ra,7g)
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p:RyA®Rg — C

Descent of data to subsystems:
— all global data comes from gluing
( Factorizability Toreall dletiag P(Eij ri @) =

ﬁ Zij pa(rh)pe (T]é)-

\,\Ow\«:\ e\

,4\/ Masen B

- - Obstruction to descent: |p (ra®rg) #
[ Failure to Factorize ﬁPA(TA)pB(TB) for some (ra, 7g)
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p:RyA®Rg — C

Descent of data to subsystems:

— all global data comes from gluing
( Factorizability JJ\/\/\/\> local data: p(zij r}"\ ® T.JB) _
ﬁ 2 pa(ra)pe(rg)-

- - Obstruction to descent: p(ra®rg) #
( Failure to Factorize )"\/\/\/\> ﬁPA(TA)PB(TB) for some (ra,7g)
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Why Geometry? Homological Obstructions, that's why

p:RyA®Rg — C

Descent of data to subsystems:

— all global data comes from gluing
( Factorizability JJ\/\/\/\> local data: p(zij r}"\ ® T.JB) _
ﬁ 2 pa(ra)pe(rg)-

- - Obstruction to descent: p(ra®rg) #
( Failure to Factorize )"\/\/\/\> ﬁPA(TA)PB(TB) for some (ra,7g)

H°[p] = {(ra, rs) € Ra x Rg: ra and rg are mxmly. correlated}/C((1,1))

17



Mutual Information:

I(pag) = S(pa) + S(ps) — S(paB) € R>o

18



Why? Because Mutual Info. Looks Like an Euler Char.

Mutual Information:

I(paB) = S(pa) + S(pB) — S(paB) € R>0

States on [[7_, End(#;) +— < (3, ---,5M)
—_———

tuple of density states

SIED, -] = = > T tog 701,
i=1

When . Tr[pi] = 1.

18



Mutual Information:

I(pag) = S(pa) + S(ps) — S(paB) € Rxo

Multipartite Mutual information:

(pp) = S (~1)/T71S(pr) € R
TCP
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Mutual Information:
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TCP

I(pq ® ps) =0

Non-vanishing N-partite mutual information = no system can “decouple”
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Mutual Information:

I(pag) = S(pa) + S(ps) — S(paB) € Rxo

Multipartite Mutual information:

(pp) = S (~1)/T71S(pr) € R
TCP

I(pq ® ps) =0

Non-vanishing N-partite mutual information = no system can “decouple”

#£N>3
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Why? Because Mutual Info. Looks Like an Euler Char.

Mutual Information:

I(pas) = S(pa) + S(ps) — S(pas) € Rxo

Multipartite Mutual information:

I(op) = 3 (-1) TS (pr) € R

TCP

I{(pQ ® ps) =0

Non-vanishing N-partite mutual information = no system can “decouple”
#£N>3
(Try a|0a080c) + V1 — a2 [1alglc) for any a € C).

19



=) (-1t l > SPT)]

| T|=k+1
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Hpp) =D (~1)ITS(p7)

TCP

= Y- [ > 5(/)T)]
k=0

| T|=k+1

~ /

"dim[GeE;k(p_p)]”

N—-1

Geom(pp) = U Geomk(p_p)
k=0

20



Why? Because Mutual Info. Looks Like an Euler Char.

Hpp) =Y (=1)IT"1S(p7)

B TCP

= (1)k1{ > 5(pr)]
k=0

| T|=k+1

“dim[Geom*(pp)]"

N—1
Geom(pp) = U Geomk(pi)

=0 Encodes all data about
P} TI=k+1

Think “simplicial complex, CW complex, (co)chain complex.”



C a sufficiently nice category of geometric objects: a ®-category with an
ability to glue objects (all pushouts)

21



What's an Euler Characteristic?

C a sufficiently nice category of geometric objects: a ®-category with an
ability to glue objects (all pushouts)

An Euler characteristic (valued in a ring D) is an assignment that takes in
any object X of C and outputs x(X) € D such that:

e x(X) only depends on X up to iso.
o X(X®Y)=x(X)x(Y)

. X(XIEIY) = Xx(X) +x(Y) = x(2)
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Doesn’t care about
gluing details along Z
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What's an Euler Characteristic?

C a sufficiently nice category of geometric objects: a ®-category with an
ability to glue objects (all pushouts)

An Euler characteristic (valued in a ring D) is an assignment that takes in
any object X of C and outputs x(X) € D such that:

e x(X) only depends on X up to iso.

o X(X®@Y) = x(X)x(Y)

. X(XIEIY) = X(X) +x(Y) —x(2)

Doesn’t care about
gluing details along Z

An Euler characteristic valued in D is a homomorphism

X : Ko(C) — D

21



Category ‘ Euler Characteristic

Finite Sets Cardinality

Finite Vector Spaces Dimension
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Category Euler Characteristic
Finite Sets Cardinality

Finite Vector Spaces Dimension

Bounded Graded Vector Spaces x(V*) =3,(-1) dim V/
Bounded cochain complexes x(C*) =Y ,(-1) dim '

22



What is an Euler Characteristic

Category Euler Characteristic
Finite Sets Cardinality
Finite Vector Spaces Dimension

Bounded Graded Vector Spaces

Bounded cochain complexes

Pairs (V, f) of a vector space
and an endomorphism f : V — V

Pairs (V*®,f*®) of a (bdd.) graded vector space
and a degree 0 endomorphism f : V® — V*®

(V) = 3, (~1) dim V!
(€)= 5,(~1)! dim €'
dimp(V,f) =Tr(f"), n € Z>1

dima(V*, %) = 30, (- 1) Tryu[(F0)"]

N
N



The Euler Characteristic of a Multipartite State

Suppose there is a category of multipartite states with isomorphisms given
by local automorphisms. Assume pp — Geom(pp) is a tautological
equivalence (or duality) of categories.



The Euler Characteristic of a Multipartite State

Suppose there is a category of multipartite states with isomorphisms given
by local automorphisms. Assume pp — Geom(pp) is a tautological
equivalence (or duality) of categories.

x(pp) = x [Geom(pp)]

23



The Euler Characteristic of a Multipartite State

Suppose there is a category of multipartite states with isomorphisms given
by local automorphisms. Assume pp — Geom(pp) is a tautological
equivalence (or duality) of categories.

x(pp) = x [Geom(pp)]

Glue together unipartite states
to make a bipartite state



The Euler Characteristic of a Multipartite State

Suppose there is a category of multipartite states with isomorphisms given
by local automorphisms. Assume pp — Geom(pp) is a tautological
equivalence (or duality) of categories.

x(pp) = x [Geom(pp)]

pAB = pa ] re

PAB
——
Glue together unipartite states
to make a bipartite state

X(paB) = x(pa) + x(p8) — x(paB)
Can repeat recursively for N-partite states

x(ep)= D (=D x(pr)

0#TCP Euler characteristic

of unipartite state



xlpp)= Y (=171 Xer)

0#TCP Euler characteristic

o
unipartite state

Define

dim(p) = Xunipartite(p)'

24



x(ep) = > ()T x(p7)

0ATCP Euler charfacteristic
o
unipartite state

Define
dim(p) = Xunipartite(p)-
x(pp @ pq) = x(pp)x(pQ) =
dim(p ® ¢) = dim(p) dim(¢).

dim(p) = S(p) does not satisfy this! dim(p) = e>(*) has its owns set of
subtle issues as well!

24



The Euler characteristic of a unipartite state

For density states on finite dimensional Hilbert spaces we can take dim to
be valued in O(C3) (everywhere holomorphic functions in three
parameters) with:

dima.q.r[(H, p)] = {dim(H)* Tr[(p)]}"

Extend to any state on a finite dimensional algebra []"_; End(%,;) via

dim[((Hx, 41)), s (Hn, 2)) ]—Zdum[ i, ol

25



We define the State Index X:
Xa,q.r(pp) = —[dim(py) +x(pp)]
—
p(1)or1
For a density state:
Xagrlop) = Y (=DITdim(#H7)* [Tr(p7)%"
pcTCP

It obeys the nice relation

X(pp @ pq) = X(pp)X(po)

26



Multipartite Information From the State Index
We define the State Index X:
Xa,q,r(pp) = —[dim(pp) +x(pp)]
——
p(1)erl
For a density state:

Xagr(pp) = Y (=D dim(H7)* [Tr(p7)7)"
pCTCP

It obeys the nice relation
X(pp @ po) = X(pr)X(pQ)

And rescalings capture deformed mutual information:

Xo,q,r(PP) _ .
Taog 2 (VTS )
0£TCP —
< (1-Trlp2])

with ¢ — 1 recovering mutual information.

26



State Index:
xa,q,r(ﬁi) = Z@ngP(_l)lTl dim(H7)* [Tr(57)]"

Tsallis/Rényi Deformed Mutual Information:

lor(Bp) = S rcp(—1) TSR (B7) Socrep(=1)T dim(Hr)* rank(pr)" € Z

qg—1

Mutual Information:
I(pp) = ETgP(—l)‘TI_ISVN(ﬁT) €R

27



Recall the GNS construction:
_ GNSg 9
p:R—C i Lp[R/Jp]

where: 3, ={re R: p(rr) =0} <R.

28



The GNS Construction Assigns Vector Spaces to States

Recall the GNS construction:
GNS ~
p:R—C—2 L°[R/3,]

)

where: 3, ={re R:p(r'r)=0} <R.

e R = Func(Q) = GNS(p) = Fun(£2,0)

e In finite dimensions: GNS(p) & H ® Image(p)”. So
dimc GNS(p) = nrank(p) = n! Tr[p°]! = dim10.1(p).

28



GNS : State®® — Rep
N——

category of
unipartite states

?Related to a refinement of independent work by Arthur J. Parzygnat: 1609.08975. 20


https://arxiv.org/abs/1609.08975

The GNS Functor?

GNS : State®® — Rep
N——

category of
unipartite states

State Rep
. Algebras and "eft modules”
Objects (R, p) (R, gM)
(pre)duals of algebra maps Algeb . .
|\/|orphisms playing nicely with states gebra maps + intertwiners
“partial traces” playing nicely together
. Products
Coproduct: Classical sum A M) x (B.N) =
(cojproducts || (o )& (5.)=(Ax Boxs) | e i)

2Related to a refinement of independent work by Arthur J. Parzygnat: 1609.08975.


https://arxiv.org/abs/1609.08975

The GNS Functor?

GNS : State®® — Rep
N——

category of
unipartite states

State Rep
Objects (R, P) Algebras a(nlg, ;I/(\E/fl; modules”

. (pre)duals of algebra maps
|\/|orph|sms playing nicely with states
“partial traces”

Algebra maps + intertwiners
playing nicely together

. Products

Coproduct: Classical sum A M B N) =

(cojproducts || (o )& (5.)=(Ax Boxs) | e i)

GNS(p — ¢) = “Radon-Nikodym Derivative/Relative Modular flow”

GNS(EEI) = X
2Related to a refinement of independent work by Arthur J. Parzygnat: 1609.08975.



https://arxiv.org/abs/1609.08975

A multipartite state over a finite set P is a functor

p : Subsets(P)°? — State
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(Non-Comm.) Geometry from a Multipartite State

A multipartite state over a finite set P is a functor

p : Subsets(P)°? —; State
T — (RT,pT)
(TCU)r— ()@ 1y Rr = Rul" i pu — pr

“partial trace over U\T"

Can make this covariant using complementation on sets, then use Cech
theory to construct a “simplicial state”

— —
— «— —
P
PO %EHPT%EHPTi”‘ : Hﬂ PT : PP
Tl=1 T|=2 T|=N-1
(C,p(1)) [T] IT| Ny IT] —
N — 1 arrows N arrows

“partial traces”
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— —
— —
Geom(pp) = py_«— H pr= H o - e
N — 1 arrows N arrows

“partial traces”

Geomk(p_p)z Hﬂ oT
| T|=k+1
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— —
— —
Geom(pp) = py_«— HH pri=- H o - e
N — 1 arrows N arrows

“partial traces”

Geomk(p_p)z Hﬂ oT
| T|=k+1

N-1

x[Geom*(pp)l = Y (~1)*dim | FH 77| = —X(pp)
k=—1 | T|=k+1
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(—
H
o B ori= B pric EE pT
IT|=1 | T|=2 CTEN-T e
' GNS
v
ans(pg) — [ aws(or) = [] GNS(PT)—) H GNS(pT) GNS(PP)

C |T|=1 | T|=2 —>|T| N-1



Pa—
o H ors HH pre EH pr<_
H

|T|=1 |T|=2 | T|=N-1

<= - — = — = =

GNS
ans(pg) — [ aws(or) = [] GNS(PT)—) H GNS(pT) GNS(PP)
T |T|=1 |T|=2 —>|T| N-1

Forget Algebra
+Alternating sum
of arrows

1 dN dN—l
0-c e 1T cws(er) &, 1T cws(er) <, .4 GNS(pT) T GNS(pp) — 0
|T|=1 |T|=2 [TI=N-1
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0-CLS [T ans(or) S [T ans(or) <525 [ ans(or) 2 ans(pp) — 0
ITI=1 |T|=2 |T|=N-1
For a bipartite state:

(a.b)~[18b—an1]

A—=A(1,1
0 - € 2D, ans(pa) x GNS(p8) » GNS(pag) — 0
(. —~— - N——’
degree 0 degree 1

HO[BAB] ={(a,b): 0= pag[x(a®1—1® b)] for all x € Ra x Rz}
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Cohomology from a Multipartite State
0cC IT ons(er) LN 1T cws(or) LR A IT oens(or) I aNS(pp) = 0
|T|=1 |T|=2 |T|=N—-1

For a bipartite state:

A—A(1,1 b)—[1®b—a®1
0 = € 22D, ang(pa) x aNS(pg) FIEETHEN, i hag) = 0
——
degree 0 degree 1

HO[BAB] ={(a,b) : 0 = pag[x(a®1—1® b)] for all x € Ry X R}

HO for a pure bipartite state is given in terms of the Schmidt
decomposition. Let S be the Schmidt rank.

dmH® =S%2 -1
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Cohomology from a Multipartite State

1 N—-2 N—1
H GNS(pT) H ans(pr) Lo - L [T ans(or) & ans(pp) — 0
2 |T|=N-1
For a blpartlte state:

A—A(1,1 b)—[1®b—a®1
0 = € 22D, ang(pa) x aNS(pg) FIEETHEN, i hag) = 0
——
degree 0 degree 1

Holp\gl = {(a,b) : 0 = pas[x(a @ 1 — 1 ® b)] for all x € Ra x Rg}

HO for a pure bipartite state is given in terms of the Schmidt
decomposition. Let S be the Schmidt rank.

dimH® = 5% — 1
dim H! = (dim Ha — S)(dimHg — S)

“measure of maximal entanglement”
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Simplicial Complexes for Measures on a Finite Set

For multipartite measures on a finite set, the GNS representation can
be made into another commutative W*-algebra.

We can take spec to recover a set from each algebra;

The result is a simplicial set/simplicial complex.
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Simplicial Complexes for Measures on a Finite Set

For multipartite measures on a finite set, the GNS representation can
be made into another commutative W*-algebra.

We can take spec to recover a set from each algebra;
The result is a simplicial set/simplicial complex.

The state index is a deformation the Euler characteristic of this
complex that takes into account the “sizes” of each simplex (given by
the measure).
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e Mutual information (and its deformations) of a multipartite state
emerge naturally from the Euler characteristic (the “state index”) of
some canonically associated non-commutative space.
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Summary

e Mutual information (and its deformations) of a multipartite state
emerge naturally from the Euler characteristic (the “state index”) of
some canonically associated non-commutative space.

e In the world of probability measures this space is a simplicial complex.

e The precise operators/random variables capturing non-local
correlations are captured by cohomology.

e Cohomology can detect how things are glued together, Euler
characteristics only count how many things are glued together:
cohomology is a finer invariant than mutual information!
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Other Comments

e There is a G-equivariant generalization of the state index:
“G-equivariant mutual info/entropy”?

e The category of states is a small part of the story between
equivalence of 2-categories through the Kasparov construction:

{ C*/W Algebras }

C*/W Algebras }
and Completely Positive maps

{and (pointed) Hilbert Bimodules
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Other Comments

e There is a G-equivariant generalization of the state index:
“G-equivariant mutual info/entropy”?

e The category of states is a small part of the story between
equivalence of 2-categories through the Kasparov construction:

{ C*/W Algebras }

C*/W Algebras }
and Completely Positive maps

{and (pointed) Hilbert Bimodules

e As a substory of this equivalence, in work3 with Roman Geiko and
Greg Moore we are exploring an equivalence of categories:

{Matrix Product States} — {Completely Positive Maps}

In order to provide insight into how open-closed 2D topological field
theories emerge as EFTs of 1D lattice systems ).

3Inspired largely by work of Verstraete and Kapustin-Turzillo-Yau



A Sample of Future Directions

e Do things become nice for states arising from holography? Quantum
Code states (c.f. Pastawksi-Yoshida-Harlow-Preskill)?

e Would cohomology class representatives encoding multipartite
non-local correlations be useful for quantum information theorists?
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Full understanding of the infinite dimensional story and its
connections to (relative) modular flow/Tomita-Takesaki theory,
non-commutative LP-spaces, etc.



A Sample of Future Directions

Do things become nice for states arising from holography? Quantum
Code states (c.f. Pastawksi-Yoshida-Harlow-Preskill)?

Would cohomology class representatives encoding multipartite
non-local correlations be useful for quantum information theorists?

Generalization of the geometric interpretation of strong subaddivity
using the Ryu-Takayanagi formula (Headrick-Takayanagi) beyond
holographic states?

Link invariants.

Generalizations of Poincaré polynomials to holomorphic functions:
much finer numerical invariants than mutual information!

Full understanding of the infinite dimensional story and its
connections to (relative) modular flow/Tomita-Takesaki theory,
non-commutative LP-spaces, etc.

I'm looking for other applications!



Software

Software computing cohomology/Poincaré polynomials is available at
github.com/tmainero.

Phase 1 Phase 3
Phase 2 -
Insert N-partite Density Profit:
State py1,.. v} € ? Deg_rele N_t; 1 P?t'_y-
N . ° nomials with positive
Dens(@i=1 #1) integer coefficients
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(Bonus Slide!) The GNS Functor on an Algebra

The GNS representation for states on an algebra A is a functor:

GNS, : Stateqa — Repy

H State, ‘ Rep 4
Objects P°5';'Y6R"Lea;@f”nls *-representations of A
p—r¢
Morphisms T (bounded) intertwiners

p < Cy for some C >0

41



Sxp




42









(Bonus Slide!) The Category of States (Again)

GNS : State®® — Rep

State Rep
. Algebras and "eft modules”
Objects (R, p) (R, kM)
M hi “preduals” of algebra maps Algebra maps + intertwiners
orpnisms play'r}%arl'tciZ:yt:;g:S,§tates playing nicely together
(co)products Classical sum (A, ,\),D)ridtjét’slv) _
(A, p)H(B,p) =(AX B,px ) (A xB, M x N)

GNS(p — ¢) = "Radon-Nikodym Derivative/Relative Modular flow”

GNS(H) = x
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