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Abstract. In order to reach the track parameter accuracy motivated by the physics goals of
the experiment, the ATLAS tracking system needs to determine accurately its almost 700,000
degrees of freedom. The demanded precision for the alignment of the silicon sensors is below 10
µm. The implementation of the track based alignment within the ATLAS software framework
unifies different alignment approaches and allows the alignment of all tracking subsystems
together. The alignment software relies on the tracking information (track-hit residuals) but
also includes the capability to set constraints on the beam-spot and primary vertex as well as the
momentum measured by the Muon System or the E/p using the calorimetry information. The
alignment chain starts at the trigger level where a stream of high pT isolated tracks is selected
online. Also a cosmic ray trigger is enabled while ATLAS is recording collision data, thus a
stream of cosmic-ray tracks is recorded exactly with the same detector operating conditions as
the normal collision tracks. We will present results of the alignment of the ATLAS tracker using
the 2011 collision data. The validation of the alignment is performed using track-hit residuals
as well as using more advanced physics observables. The results of the alignment with real data
reveals that the attained precision for the alignment parameters is approximately 5 µm.

1. Introduction
The ATLAS experiment [1] is a general purpose experiments at the Large Hadron Collider (LHC)
at CERN. It records proton-proton collisions at the center-of-mass energy up to 14 TeV. The
Inner Detector (ID) [2] is the most important tracking system occupying a cylindrical volume
of 2.1 m in diameter and 6.2 m in length around the interaction point that surrounds the beam-
pipe. It is enclosed inside the central superconducting solenoid providing a 2 T axial field. The
ID consists of two silicon subsystems, the Pixel Detector and the Semiconductor Tracker (SCT),
complemented by the Transition Radiation Tracker (TRT) composed of straw tubes. Figure 1
shows an overview of the ID.

The Pixel detector consists of a barrel region with three cylindrical layers and two symmetric
end-caps each containing three disks for tracking in the forward region. All pixel modules (1744
in total) are identical, with a sensor segmented in 50 µm × 400 µm pixels providing a 2D readout
with a resolution of 10 µm and 115 µm in the rφ and rz coordinates, respectively. The SCT is
made of four layers in the barrel region and nine disks in each of the two end-caps. Different
types of modules have been installed in the SCT, all with the same components but differing in
geometry. Each one of the 4088 modules is composed of two pairs of single-sided silicon micro-
strip detectors glued back-to-back with a relative stereo angle of 40 mrad. The strip pitch is
80 µm for the barrel and varying from ∼ 55 µm to ∼ 90 µm for end-cap modules due to their
fan-out geometry. The intrinsic resolution in the rφ and rz coordinates is 17 µm and 580 µm,
respectively. The TRT is the outermost and largest of the ID sub-detectors, which is made of



Figure 1. Overview of the ATLAS Inner Detector.

straw drift tubes which have a single hit resolution of 130 µm in the (rφ) coordinates. The straw
tubes are arranged in 32 modules in each of the three barrel layers and 2 × 40 end-cap wheels
(176 modules in total).

1.1. Alignment goals
After the assembly of the detector, the position of the individual modules is known with much
worse accuracy than their intrinsic resolution. Therefore the alignment procedures have to be
applied. The baseline goal of the alignment is to determine the position and orientation of the
modules with such precision that the track parameters’ determination is not worsened by more
than 20% with respect to that expected from the perfectly aligned detector. This is crucial for
efficient track reconstruction, precise momentum measurement and vertex reconstruction.

1.2. Alignment challenges
The alignment challenges come from huge numbers of DoFs to be aligned. For each module 6
alignment degrees-of-freedom (DoF) can be defined (if ignoring the module level deformation):
3 translations and 3 rotations. Thanks to the strict assembly tolerance of the sensors in the
structure of the SCT modules [3][4], alignment corrections at the level of the individual single-
sided sensor are not computed. This means for Pixel and SCT, considering 6 DoFs per module,
in total ∼35,000 DoFs; For TRT, considering 2 DoFs per Straw, in total ∼700,000 DoFs, should
be aligned respectively. In order to ensure the quality of the alignment, huge statistics such as
ten million high quality tracks are needed which is rather computing intensive. Several hundred
or even thousand CPUs are simultaneously used in every iteration.

2. Alignment strategies and algorithms
Two independent algorithms have been developed and validated in the ATLAS offline software
framework [5]. All are iterative and make use of the residuals of the reconstructed hits on tracks
(See the explanation in figure 2).



Figure 2. The middle module is
shifted away from its design posi-
tion. Real positions (green filled)
are not known, thus the reconstruc-
tion uses the nominal position (red
dashed). Consequently track fit
quality is degraded. The residual
distribution of the displaced mod-
ule (and the others) will be biased
away from zero. This bias measures
the shift of the module and is the
basis for the alignment.

The main idea is that the sum of the residuals over a large number of reconstructed tracks
should be minimal for the aligned geometry. This can be formulated as a large χ2 minimization
problem [6][7] :
Let r(a, τ) be the vector of the residuals of the track hits. Residuals depend on both the
alignment parameters (a) and the track parameters (τ). V is the covariance matrix of the hit
measurements. The alignment χ2 is built as follows :

χ2 =
∑

tracks

[r(a, τ)]TV −1r(a, τ) (1)

The alignment corrections (δa) are obtained by applying the minimization condition to the χ2

and by making use of the linear expansion of the residuals around r0 (their initial estimates).
This requires solving linear systems of the size equal to the number of the alignment DoFs as
follows:

dχ2

da
= 0 =⇒ δa = −

[ ∑
tracks

(
dr
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)T

V −1
(
dr
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)]−1

·
[ ∑
tracks

(
dr
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)T

V −1r0

]
(2)

2.1. Global χ2 alignment
In the Global χ2 approach, the solution given by equation 2 is calculated by using the total
derivatives of residuals with respect to alignment parameters :

dr

da
=

∂r

∂a
+

∂r

∂τ

dτ

da
(3)

which includes all correlations between the modules. This allows it to converge quasi-instantly.
The calculation is numerically very challenging as it needs an inversion of a large matrix. The
Global χ2 approach is currently the baseline alignment algorithm used for the ID.

2.2. Local χ2 alignment
In the Local χ2 approach, the solution is also calculated according to equation 2, but partial
derivatives with respect to alignment parameters are used instead of the total ones :

dr

da
=

∂r

∂a
(4)

This way the correlations between different detector modules are neglected and the alignment
matrix is reduced to a series of 6×6 matrices (2×2 for TRT), which can be inverted quickly, as



opposed to the Global χ2 approach. The inter-module correlations are restored by performing
a certain number of iterations, updating the geometry of the detector and then re-fitting the
tracks.

3. Computing Model
3.1. Alignment level
To address the realistic misalignments of the detector, the alignment is done at different levels
of granularity motivated by the mechanical structure of the ID. First, the largest structures,
subdetector barrels and end-caps, are aligned (L1). A second level of alignment (L2) treats
barrel layers and end-cap disks or wheels as separate alignable objects. At this level, more
structures, and consequently more degrees-of-freedom, are aligned. The final alignment level
consists of the module-by-module (Pixel, SCT) or wire-by-wire (TRT) alignment. This third
alignment level has the most degrees-of-freedom and requires the greatest statistics.

3.2. Each iteration
The first part is the track accumulation, in which for each selected track the first and the second
order derivatives of χ2 with respect to the alignment parameters are calculated and added to
equation 2. The accumulation is split into several hundred parallel subjobs.

The second part is the solving for the alignment corrections (δa). Matrices and vectors
resulting from the accumulation jobs are first merged together. Based on equation 2, very
large linear matrix equation is solved to get the corrections. Different matrix solvers have
been implemented, some are based on the direct diagonalization libraries (like CLHEP [10]
and LAPACK [8]), the others are based on the fast-solving techniques (like MA27 [9]) which
typically exploit the special properties of the large matrix to be inverted, such as sparseness and
symmetry. Even though the fast-solvers don’t provide the errors for the solution, their speed
allows them to be used for the problems of very large size.

3.3. The full chain
Figure 3 shows the flow diagram of the full
alignment iterations chain. The alignment
is mainly performed on data from a special
trigger stream, the ID Calibration stream.
However in some cases it is also run over
high quality tracks in physics streams.
Track reconstruction is followed by the
alignment monitoring which checks for
the quality of the current constants.
Afterwards the Silicon and TRT alignment
is performed sequentially as described in
the flow diagram. The obtained constants
are fed into the next iteration. The final
alignment constants are uploaded into the
database after the iteration process has
been completed.

Figure 3. Flow diagram showing
the full alignment iterations chain.

3.4. Run on Grid and automatic alignment
An infrastructure for running the alignment on Grid has been developed and is extensively used.
Traditionally, the ID alignment is run on the CERN batch system (CAF). With the increasing



LHC data statistics the CPU and storage resources for ID alignment are no longer sufficient. The
datasets accessible on CAF are quite limited too. The Grid environment offers access to nearly
all ATLAS datasets and massively larger CPU and disk storage resources. Another advantage
is that there are more powerful and convenient tools and interfaces for job management.

Last year the detectors were found to be slowly moving, hence decided to perform the
alignment run by run to promptly detect the movements. Thus a mechanism that can
automatically run the L1/L2 alignment in the calibration loop has been implemented. The
shifters watch the constants changes, if significant changes are observed then some detailed
study will be triggered and an updated set of constants will be produced.

4. Weak modes and constraints
The minimization of track residuals is necessary but not sufficient. The global distortions which
preserve the helical trajectory of tracks and leave the χ2 unchanged while systematically biasing
the track parameters are known as weak modes. These kind of distortions are difficult to be
removed by the minimization of the residuals, on the other hand they are very dangerous to
physics results. Figure 4 shows a few example weak modes which may potentially have big
impact on physics.

Figure 4. Selected possible systematic distortions for cylindrical structures.

Two main kinds of methods can deal with the weak modes. The first is the usage of different
track topologies such as cosmics, beam halo and beam gas. The second is using constraints.
Several constraint tools have been implemented and work quite effectively: These include
beam-spot and vertex constraint, constraint on invariant masses of well known resonant decays,
constraint on momentum from other systems (such as the constraint from Muon Spectrometer
standalone momentum measurement, E/p constraint from the curvature asymmetry between e+

and e−).

5. The alignment results
5.1. Overall Residuals
The currently achieved alignment delivers nearly perfect residuals (see in figure 5 the exemplary
plots of SCT local x residuals. In the Pixel and the SCT the local x and local y axes are in the
detector plane with the x-axis pointing along the most precise measurement direction), which
indicates the algorithms work correctly [6]. Now we are focusing on effects that are beyond just
getting the residuals correct.

5.2. Residuals maps
There are also huge improvements in the detailed 2-D maps of the mean of the residual after the
alignment for every sub-detector. Exemple plots are shown in figure 6 and 7. They are detailed
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Figure 5. The SCT local x residual distributions for the jet trigger data sample reconstructed
with the Autumn 2010 Alignment (full circles), compared with the dijet MC simulation sample
(open circles). The distributions are integrated over all hits-on-tracks in barrel modules (left)
and end-cap modules (right). Tracks are required to have pT > 15 GeV.

2-D maps of the mean of the residual for the Pixel and the TRT before and after the alignment,
clearly can see most of the average Pixel local x residuals after module level alignment are within
5 µm.
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Figure 6. Detailed residual maps of the Barrel pixel modules. Each pixel module has been
split in a 4×4 grid and the average residual in each cell is plotted. Each module is identified by
its position in the layer. This is given by its “η ring” and “φ sector” indices. Figure 6(a) shows
the average local x residual before the module level alignment; figure 6(b) shows the average
local x residual after module level alignment (including pixel module distortions). Only a subset
of the pixel modules of the intermediate pixel barrel layer is shown.



End-cap 4-plane wheel

0 5 10 15 20 25 30 35 40

φ
s
e

c
to

r

5

10

15

20

25

30

 [
m

m
]

µ

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

ATLAS Preliminary

TRT end-cap A
Before wire alignment

(a)

End-cap 4-plane wheel

0 5 10 15 20 25 30 35 40

φ
s
e

c
to

r

5

10

15

20

25

30

 [
m

m
]

µ

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

ATLAS Preliminary

TRT end-cap A
After wire alignment

(b)

Figure 7. Mean of the Gaussian fit to TRT residuals vs φ-sector and wheel before, left, and
after, right, the wire-by-wire alignment. The plots illustrate the end-cap A results. The white
bins are due to dead channels.

5.3. Detector stability
Figure 8 shows an example of the alignment corrections for translations in the global x direction,
which are performed on a run by run basis starting from a common set of alignment constants
[11]. Sizable movements (O(10 µm)) coincide with sudden environmental changes. In other
periods a generally good stability (O(1 µm)) is observed.
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Figure 8. Level 1 alignment corrections for translations
in the global x direction vs. the Run number.

5.4. Z → µ+µ− performance
For the ATLAS 2011 Summer reprocessing, a new set of constants was derived, for which the E/p
constraint was employed for the first time. Preliminary results indicate significant performance
improvement especially in the endcap regions. The mass resolution of the Z → µ+µ− resonance
decay very nearly reproduces the one expected from the perfectly aligned MC [11]. Figure 9
shows the Z mass resolution in different ID regions; the black circles are for the Spring 2011



alignment, the red circles for the Summer 2011 alignment, shadow area for the MC perfect
geometry.

 [GeV]-µ+µM

60 70 80 90 100 110 120

Z
 c

a
n

d
id

a
te

s
 /

 1
 G

e
V

0

2000

4000

6000

8000

10000
Spring 2011 alignment
Summer 2011 alignment

 MCµµ →Z 

ATLAS Preliminary

 = 7 TeVsData 2011, 

-1
 L dt = 0.70 fb∫ID tracks

| < 1.05+µ
η|

| < 1.05-µ
η|

 [GeV]-µ+µM

60 70 80 90 100 110 120

Z
 c

a
n

d
id

a
te

s
 /

 1
 G

e
V

0

500

1000

1500

2000

2500

3000 Spring 2011 alignment
Summer 2011 alignment

 MCµµ →Z 

ATLAS Preliminary

 = 7 TeVsData 2011, 

-1
 L dt = 0.70 fb∫ID tracks

 < 2.5+µ
η1.05 < 

 < 2.5-µ
η1.05 < 

 [GeV]-µ+µM

60 70 80 90 100 110 120

Z
 c

a
n

d
id

a
te

s
 /

 1
 G

e
V

0

500

1000

1500

2000

2500

3000
Spring 2011 alignment
Summer 2011 alignment

 MCµµ →Z 

ATLAS Preliminary

 = 7 TeVsData 2011, 

-1
 L dt = 0.70 fb∫ID tracks

 < -1.05+µ
η-2.5 < 

 < -1.05-µ
η-2.5 < 

Figure 9. Invariant mass distribution of Z → µ+µ− decays, where the mass is reconstructed
using track parameters from the ID track of the combined muons only, using about 702 pb−1

of data collected during Spring 2011. Performance in case of no misalignment based on Monte
Carlo is compared to observed performance of data processed with the Spring 2011 alignment
and data processed with the Summer 2011 alignment constants.
The left figure requires both tracks in the barrel region |η| <1.5; the middle require at least one
track in the end-cap A region 1.05< η <2.5; the right requires at least one track in the end-cap
C region -2.5< η <-1.05.

The performance improvement of the latest alignment constants can be attributed to the
fact that they eliminate most of the momentum related weak modes. Figure 10 shows the Z
invariant mass vs. φ for µ+ and µ− [11]. Clearly visible sinusoidal structures in the Spring 2011
alignment indicate weak distortions of the geometry. Most of the structures disappear in the
Summer 2011 alignment.

6. Summary
Alignment of the Inner detector of ATLAS is a very complex and challenging task. After a
fast learning phase, already now the resolution on the reconstructed track parameters very
closely approached the MC expectation for a perfect geometry. The future plans include further
understanding of the alignment systematics, better description of time dependent changes and
of the internal module distortions. The ID Alignment is making a significant contribution to
ATLAS precision measurements and new physics searches.
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Figure 10. Mean Z invariant mass vs. φ for positive and negative muons, respectively.
The mass distributions are fitted in RooFit using an unbinned maximum likelihood fit of
a Breit-Wigner distribution, describing the intrinsic Z width, convolved with a Crystal Ball
function as resolution function. Only Z candidates within the mass range [71, 111] GeV are
used. Performance in case of no misalignment based on Monte Carlo is compared to observed
performance of data processed with the Spring 2011 alignment and data processed with the
Summer 2011 alignment constants.
The left figure requires both tracks in the barrel region |η| <1.5; the middle requires both tracks
in the end-cap A region 1.05< η <2.5; the right requires at least one track in the end-cap C
region -2.5< η <-1.05.
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