
Visual physics analysis – from desktop to physics analysis
at your fingertips

H-P Bretz, M Erdmann, R Fischer, A Hinzmann, D Klingebiel, M Komm,
J Lingemann, M Rieger, G Müller, J Steggemann, T Winchen
RWTH Aachen University, III. Physikalisches Institut A, 52062 Aachen, Germany

E-mail: rfischer@physik.rwth-aachen.de

Abstract. Visual Physics Analysis (VISPA) is an analysis environment with applications in high energy
and astroparticle physics. Based on a data-flow-driven paradigm, it allows users to combine graphical
steering with self-written C++ and Python modules. This contribution presents new concepts integrated
in VISPA: layers, convenient analysis execution, and web-based physics analysis. While the convenient
execution offers full flexibility to vary settings for the execution phase of an analysis, layers allow to create
different views of the analysis already during its design phase. Thus, one application of layers is to define
different stages of an analysis (e.g. event selection and statistical analysis). However, there are other use
cases such as to independently optimize settings for different types of input data in order to guide all data
through the same analysis flow. The new execution feature makes job submission to local clusters as well
as the LHC Computing Grid possible directly from VISPA. Web-based physics analysis is realized in the
VISPA@Web project, which represents a whole new way to design and execute analyses via a standard
web browser.

1. Introduction
Visual Physics Analysis (VISPA) is an integrated analysis development environment for high-energy and
astroparticle physics [1, 2]. The goal is to provide one environment that addresses the typical cycle of
designing, executing, and verifying of analyses.

In VISPA, analyses are designed and represented visually as an analysis flow. This flow consists of
individual modules and connections among them via a variable number of input and output ports. During
the execution, data sets are guided through the flow on an event by event base. Depending on internal
criteria, user programmed modules decide to which output port the current event will be propagated.
Along with the attached connection to the respective port, this also determines the next module to handle
the event. Once an event is not forwarded to another module anymore, the analysis loop continues with
the next event in the data set.

The modular structure simplifies the exchange of whole analyses or even parts of it between physicists
due to the clear module interface and the fact that modules are independent from each other. In order
to make the design process more flexible, VISPA supports C++ and Python modules. While C++ offers
better runtime performance, Python modules are faster to prototype due to advantages of interpreted
code compared to compiled code. Part of the flexibility is also the option to include arbitrary external
packages.

Analyses in VISPA employ three main paradigms, see figure 1. Within modules, physics objects are
accessible via the physics library PXL [3,4] in an object-oriented manner. The analysis flow based on the



module system implements a data-flow driven paradigm. Visual programming and steering are provided
within one integrated graphical user interface (GUI).

PXL Module System GUI
Object oriented Flow based Visual steering

Physics objects

hep particles, vertices, 
astro objects

Physics representation
relations, eventviews

Core functionality

input / output, 
python-bindings

Core functionality
window, menus

Plug-in mechanism

batch manager

Analysis development

analysis designer

Core functionality

Predefined modules
decide, analyse, switch

Custom modules

analysis chain, 
container object

interface for C++ and 
python modules

Physics library Analysis flow Front-end

Figure 1. VISPA is based on three main components. The physics library PXL, the
module system, and the GUI are summarized along with some of their core features.

In addition to the the physics objects, PXL also manages relations among these objects and handles
input / output operations. Part of the module system are a container object and the analysis chain itself,
through which the container is guided. It also contains predefined modules, e.g. a simple switch module,
which can be used to split a data stream. User interfaces to C++ and Python build the foundation for
user-written modules. The graphical front-end is written in Python [5] and uses the Qt framework [6]
with the Python-bindings PyQt [7]. While the core part only provides common GUI elements, such as
menus, toolbars and dialogs, the user interacts with plug-ins that are loaded into the GUI. Subsequently,
two plug-ins, which provide core functionality to the analyst, are presented, see figure 2.

The analysis designer is the tool used to create and configure the analysis flow.
The PXL data browser visualizes data files event by event in order to verify them.

VISPA has been successfully used for published analyses in high-energy and astroparticle physics [8,
9].

As outlined so far, VISPA integrates the analysis design and verification steps of the development
cycle. In the following section, the project’s scope is extended to further improve analysis handling and
comfortably integrate the execution step. Finally, with VISPA@Web a new perspective to visual physics
analysis via a web-interface is opened.

2. New developments
2.1. Improved handling of complex analysis designs
Analyses often contain steps that the analyst would like to execute independently. There might also be
parts of the analysis that should run several times with only slightly different configuration, e.g. for
different types of data sets. These are two examples of complex problems during the analysis process
that could be addressed by creating separate analysis configurations. In order to integrate such cases into
one design, we introduce a new layering technique into VISPA.

The idea is to create one analysis flow as usual, however, containing all steps. This analysis flow is
regarded as the base layer. New layers can be created upon the base layer and will automatically inherit
all settings from the underlying layer. Within each layer, module options can be changed and modules



Figure 2. Top: The picture shows the analysis designer, which consists from left to right of a
list of all available analysis modules, the workspace where the actual analysis flow is designed
and visualized, and a property view to configure options of the selected module. Bottom:
Here, the PXL data browser is depicted showing a physics event. On the left-hand side there
is a tree view representation, while the center shows a Feynman-like diagram. The property
view shows detailed information about a selected physics object.



can be enabled, disabled, and bypassed. By just leaving a subset of all modules active, while all other
modules are deactivated, the first example is covered. In the case of the second example, certain module
options could be changed to reflect the requirements of a certain data set. For the execution, the analyst
selects the layer that should be run. Figure 3 shows an example analysis flow using layers.

Figure 3. Left: The property view of the analysis designer is extended by
a layer control box in the bottom. Right: An analysis flow with activated
and deactivated (greyscale) modules. The currently active analysis path
is realized as a layer.

2.2. Convenient analysis execution
Analyses are executed in different computing environments. While basic tests may be run locally on
a desktop or laptop computer, there might be resource requirements, e.g. computing power or storage
needs, that can only be covered by batch systems. VISPA provides a batch system plug-in making
execution in these different environments transparently accessible. Based on an analysis developed with
the analysis designer, a batch job is created. At this stage it is possible to override module options, e.g.
to scan over ranges or a list of parameters. Use cases are for instance to try different cut values or to give
a list of input files.

Once the job is configured, it is submitted to one of VISPA’s batch managers. For each supported
back-end batch system, a separate batch manager exists. These managers make sure to configure the
batch job correctly for the corresponding back-end. Currently, a local batch manager, a condor batch
manager and a grid batch manager are included. The local batch manager executes the analysis on
the local machine running VISPA. The condor batch manager supports the condor batch system [10],
while the grid batch manager submits jobs to the world wide computing grid [11]. The mechanism
described allows the user to design the analysis and the batch job independent from the desired back-
end. Submitting the job is the only part of the mechanism in which the back-end becomes important.

2.3. Web-based physics analysis
Software packages need to be installed and maintained. This has two consequences. First of all, the
packages are available only on computers where they are installed. Secondly, the software has to be kept
up-to-date on each machine. A complete new perspective of accessing physics analysis is VISPA@Web,
which is the realization of the VISPA concept accessible via a web browser. Since VISPA@Web
follows a server-client approach, the software has to be installed once only to serve several users. At
the same time, each analysis is stored on the server and is, therefore, accessible from any computer
connected to the internet without special requirements on the client side. While it is already fairly easy
to exchange analysis modules with VISPA, this is even easier for analysts who use the same server. Thus,
collaboration efforts are further enhanced.



ClientServer

P
h

y
si

cs
 l

ib
ra

ry

A
n

al
y
si

s 
fl

o
w

F
ro

n
t-

e
n

d

Asynchronous
communication

(AJAX and JSON)

Request

Response

Figure 4. VISPA@Web consists of the same components
as the desktop application as seen in figure 1. Here these
components are devided between server and client side.

VISPA@Web employs the same components as the desktop version, see figure 4. However, while the
front-end is the web interface, the physics library and analysis flow run on the server. Server and client
communicate in an asynchronous manner using the AJAX technique [12]. Therefore, the web page does
not have to be completely reloaded each time the user interacts with the front-end. The interactions are
rather transferred to the server in the background in the JSON format [13] and are immediately applied
to the analysis design. The user can just shut down his browser and reconnect, even from a different
computer, and will find all of his analyses in the same state as when he quit the session before.

Figure 5. VISPA@Web screenshot. The interface is designed to resemble the
desktop application in order to enable users familiar with VISPA to get started
immediately.



Besides AJAX, which is provided by the ExtJS package [14], VISPA@Web also uses other up-to-date
web technologies. The front-end uses HTML5 [15] and CSS [16].

Currently, VISPA@Web is in a beta phase. Basic analyses can be designed and executed. The next
steps planned are to perform a multi-user field test and to integrate the aforementioned batch system
plug-in in order to allow the system to scale with the number of users.

3. Summary
VISPA is a well-tested analysis development environment with applications in high-energy and
astroparticle physics. Within the project, new technologies are explored. Layers unify and simplify
the handling of likewise analysis steps while they increase the flexibility at the same time. The integrated
batch system plug-in makes job submission to multiple back-ends effortless. Both layers and the batch
system are consequent improvements based on the foundations of VISPA. VISPA@Web represents a
new perspective and demonstrates that web-based physics analysis is possible.

References
[1] Actis O, Erdmann M, Fischer R, Hinzmann A, Kirsch M, Klimkovich T, Müller G, Plum M and Steggemann J 2008

(Preprint 0810.3609v1) URL http://arxiv.org/abs/0810.3609v1
[2] Brodski M et al. 2010 Proceedings ACAT2010, Jaipur, India, PoS(ACAT2010) 064
[3] 2011 Physics eXtension Library (PXL) URL http://pxl.sourceforge.net
[4] 2010 PXL Class Documentation URL http://pxl.sourceforge.net/doxygen3a
[5] 2011 Python Programming Language URL http://www.python.org
[6] 2008 Qt - A cross-platform application and UI framework URL http://www.qtsoftware.com
[7] 2010 Pyqt URL http://www.riverbankcomputing.co.uk
[8] Erdmann M and Schiffer P 2010 Astropart. Phys. 33 201 (Preprint 0904.4888)
[9] 2011 PARametrized Simulation Engine for Cosmic rays (PARSEC) URL http://www.physik.rwth-aachen.

de/parsec
[10] Thain D, Tannenbaum T and Livny M 2005 Concurrency - Practice and Experience 17 323–356
[11] Donno F and Litmaath M 2008 Data management in WLCG and EGEE. Worldwide LHC Computing Grid Tech. Rep.

CERN-IT-Note-2008-002 CERN Geneva
[12] Garrett J J 2005 Ajax: A new approach to web applications URL http://www.adaptivepath.com/ideas/

ajax-new-approach-web-applications
[13] Crockford D The application/json media type for javascript object notation (json) URL http://tools.ietf.org/

html/rfc4627
[14] Sencha Inc 2011 JavaScript Framework for Rich Apps in Every Browser URL http://www.sencha.com/

products/extjs/
[15] Hickson I et al. Html5 - a vocabulary and associated apis for html and xhtml URL http://www.w3.org/TR/html5/
[16] Bos B, Lie H and Lilley C The text/css media type URL http://tools.ietf.org/html/rfc2318

0810.3609v1
http://arxiv.org/abs/0810.3609v1
http://pxl.sourceforge.net
http://pxl.sourceforge.net/doxygen3a
http://www.python.org
http://www.qtsoftware.com
http://www.riverbankcomputing.co.uk
0904.4888
http://www.physik.rwth-aachen.de/parsec
http://www.physik.rwth-aachen.de/parsec
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://www.sencha.com/products/extjs/
http://www.sencha.com/products/extjs/
http://www.w3.org/TR/html5/
http://tools.ietf.org/html/rfc2318

