

Fractal dimension analysis in a highly granular calorimeter

Manqi RUAN

Laboratoire Leprince-Ringuet (LLR) Ecole polytechnique 91128, Palaiseau

28/08/2011

Multi bosons	Multifermions + Boson(s)
ZH	e⁺e⁻H,e+e−Z
WW	vv H , vv Z
ZZ	ttH
ZHH	e v W
ZZZ	VV WW, VV ZZ
ZWW	ttbar

e.g.

Calorimeter for ILC

Di-jet mass for WWvv & ZZvv @ 500GeV

Particle Flow Algorithm (PFA)

Measure jet particles separately in different sub detector!


```
Charged Particle – Tracker:

\Delta p/p^2 \sim 2E-5 (1/GeV)

Photon – ECAL:

\Delta E/sqrt(E) \sim 15\%

Neutron Hadron – HCAL:

\Delta E/sqrt(E) \sim 50\%
```

If 100% separated:

 σ^2 jet = σ^2 ch. + $\sigma^2 \gamma$ + $\sigma^2 h^0$ gives about $(0.14)^2 E_{io}$

- PFA: less confusion ~ good separation ~ high granularity Granularity > Energy Resolution for the Calorimetry...
- PFA Oriented detector: > 100M electronic channels
 - ILD (European + Asia, International Large Detector): TPC (+ Silicon inner detectors) tracking with B = 3.5T
 - SiD (US, Silicon Detector): Silicon tracking with B = 4T

Calorimeter for II

High granularity Calorimetry

eg: ECAL Prototype, 10k channels in a cube of 18 cm side ~ 1/8 of CMS ECAL

C

Calorimeter for ILC

Technology tree

Scintillator AHCAL with 3 * 3 cm cell @ DESY

2 GRPC Digital HCAL with 1 * 1 cm cell: SDHCAL @ IPNL et al DHCAL @ Argonne

28/08/2011

DHCAL test beam: 120 GeV pion shower

Shower particle: to interact or not

shower ~ self similar (Mandelbrot Set)

Measure shower Fractal Dimension (FD) at high granularity calorimeter

- Varying scale by grouping neighbouring cells
- Count Number of hits at different scale (define RNx = N1mm/Nxmm)

Shower: Self Similar

40GeV e⁺ 20GeV e⁺

10GeV e⁺ 5GeV e⁺ 2GeV e⁺

40GeV μ⁺

5GeV μ⁺

2GeV μ⁺ 40GeV π⁺ 20GeV π⁺

10GeV π⁺

5GeV π⁺ 2GeV π⁺

N_{1mm}/N_x

10

Ratio of NHits Vs Cell Size for e^+ , π^+ and μ^+

rms as error bar

10

- Characteristic constant depend on energy/PID:
 - $FD = 1 + \langle InRN_a/In(a) \rangle$
 - Global parameter based on local density
 - Cell Sizes: 2 10, 20, 30, 50, 60, 90, 120, 150mm.
 - Samples: Particles shot directly to GRPC DHCAL with only B Field
- Be observed within
 - Low scale: minimal interaction energy & sensor layer thickness (1.2mm)
 - High scale: fully containment ~ 1 hits per layer

10² CellSize/mm

Potential tool for PID

FD together with other info (Nhits): Clear separation at different scales

Remark: Energy dependent Cuts, easier for charged particles

1mm	e+	u	h
e+	998	0	2
u	1	994	5
h	15	14	971

10mm	e+	u	h
e+	1000	0	0
u	0	995	5
h	17	14	969

30mm	e+	u	h
e+	1000	0	0
u	0	996	4
h	18	11	971

28/08/2011

Calorimeter for ILC

FD @ different size

Extreme Cases: Pion

- Pion: MIP, Pion decay;
- EM interaction (pi + N = P + pi0); partially identified by interaction point tagging 28/08/2011 ACAT 2011 @ Brunel 13

Together with Nhit information: to identify Muon radiation & String noise...

σ/M: Large cell better at low energy & Smaller cell at high energy.
 Linearity: Better at 2 – 5 mm cell, strong saturation effects at larger cell...
 Naively: 5mm seems a nice choice...

FD for Energy Estimation

• For example: Compensation based on the correlation of NH_30mm & FD1mm:

E = a * NH_30 + b * FD ~ 30%/sqrt(E)! But...

- Correlation coefficient depending on Energy: b ~ 0.0266*E. To measure cluster energy of charged particle (with track info): check matching
- A set of energy independent (LO) estimator: $E = a' * NH_x/(1 FD*b')$

Hand put Energy Estimator with FD: NH10/(1-0.65*FD10) Energy resolution improved at high energy: ~ saturation effect correction Linearity improved: closed to 5mm Cell

Summary

- Calorimeter with extremely high granularity that can separate different showers is essential for the particle flow algorithm, which ensures good jet energy resolution at Linear Collider detector.
- Huge potential for reconstruction algorithm at high granularity
 - Tracking inside calorimeter...
 - Shower Fractal Dimensional analysis
 - Promising tools for PID
 - Better cluster track linking for Particle Flow Algorithm
 - Correction for shower energy measurement
 - Not fully investigated yet...
 - Your dreamed but never realised algorithms

Special Thanks to ...

Spare slides

Physics @ LC

Klaus Moenig: Physics potential of LC

A LC is needed besides the LHC in any case

28/08/2011

- CLIC: Compact Linear Collier, center-of-mass energy: 0.5 5 TeV. Warm technology (Room temperature & high gradient (~ 100MV/m), small bunch spacing).
- ILC: International Linear Collider, center-of-mass energy: 0.5 1.0 TeV. Cold technology (2K & low gradient (~ 31.5 MV/m), large bunch spacing)
- CLIC & ILC: very different accelerators with similar detector.

Gas Vs Scintillator

Gas: High granularity (1*1 cm) @ low cost

To compare:

Sensor layer in Scintillator AHCAL. Cell size: 3*3 cm, 6*6 cm & 12 * 12 cm

- Gaseous detector:
 - RPC: High efficiency, homogeneous, low cost, robust...
 - Huge fluctuation on induced charge: digital or Semi-digital (channel coded on 2 bits) readout...
 - Free of direct neutron hits

GRPC SDHCAL

- Prototypes & test beam
 - Toward the proof of principle for Detector Baseline Design (DBD, end of 2012)
 - Mini DHCAL, $m^2 \rightarrow m^3$ ANR DHCAL with various new technologies
 - Performance study @ test beam & cosmic ray: homogeneity, efficiency, multiplicity, stability, noise rate, induce charge spectrum...

