
The AAL project: automated monitoring and

intelligent analysis for the ATLAS data taking

infrastructure

A Kazarov1, G Lehmann Miotto2 and L Magnoni2
1 CERN, on leave from PNPI, St.Petersburg, Russian Federation
2 CERN, European Laboratory for Particle Physics (CERN), Geneva, Switzerland

E-mail: andrei.kazarov@cern.ch, giovanna.lehmann@cern.ch, luca.magnoni@cern.ch

Abstract. The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at
CERN is the infrastructure responsible for collecting and transferring ATLAS experimental
data from detectors to the mass storage system. It relies on a large, distributed computing
environment, including thousands of computing nodes with thousands of application running
concurrently. In such a complex environment, information analysis is fundamental for controlling
applications behavior, error reporting and operational monitoring. During data taking runs,
streams of messages sent by applications via the message reporting system together with data
published from applications via information services are the main sources of knowledge about
correctness of running operations. The flow of data produced (with an average rate of O(1-
10KHz)) is constantly monitored by experts to detect problem or misbehavior. This requires
strong competence and experience in understanding and discovering problems and root causes,
and often the meaningful information is not in the single message or update, but in the
aggregated behavior in a certain time-line. The AAL project is meant at reducing the man
power needs and at assuring a constant high quality of problem detection by automating most
of the monitoring tasks and providing real-time correlation of data-taking and system metrics.
This project combines technologies coming from different disciplines, in particular it leverages
on an Event Driven Architecture to unify the flow of data from the ATLAS infrastructure, on
a Complex Event Processing (CEP) engine for correlation of events and on a message oriented
architecture for components integration. The project is composed of 2 main components: a
core processing engine, responsible for correlation of events through expert-defined queries
and a web based front-end to present real-time information and interact with the system.
All components works in a loose-coupled event based architecture, with a message broker to
centralize all communication between modules. The result is an intelligent system able to
extract and compute relevant information from the flow of operational data to provide real-time
feedback to human experts who can promptly react when needed. The paper presents the design
and implementation of the AAL project, together with the results of its usage as automated
monitoring assistant for the ATLAS data taking infrastructure.

1. Introduction
This paper presents the AAL project, a new tool meant at providing automated monitoring
and intelligent analysis for the ATLAS data taking infrastructure. First we introduce the data
taking facilities of the ATLAS experiment at CERN and the motivation which drove this new
development. In section 2 we describe the AAL project, the main functionalities and the different



technologies we are using. In section 3 we present the AAL engine architecture, in section 4 the
visualization strategies we implemented and finally in section 5 we describe how the tool has
been adopted and the results and conclusions.

1.1. ATLAS TDAQ system
ATLAS [1] (A Thoroidal LHC Apparatus) is a particle physics experiment at the Large Hadron
Collider at CERN. The Trigger and Data Acquisition (TDAQ) system of ATLAS is responsible
for selecting and transferring ATLAS experimental data from the detector to the mass storage
system. To cope with the very high data rate produced by the detector a complex and distributed
computing infrastructure has been built. More than 200 switches and routers interconnect
around 2000 hosts to build a real-time filtering system for particle collision events. On top of
the hardware infrastructure there are over 20.000 applications responsible of analyzing, filtering
and moving event data to permanent storage [2].

1.2. Motivation: improving monitoring with automation and event correlation
The TDAQ system is operated by a non-expert shift crew, assisted by a set of experts providing
knowledge for specific components. The daily work of operators is made of procedures to run
the system, periodic checks and controls on system status, well defined reaction in case of
known problems and interaction with experts in case of non standard issues. The evaluation of
correctness of running operations requires strong competence and experience in understanding
problems and root causes, and often the meaningful information is not in the single message or
update, but in the aggregated behavior in a certain time-line. The AAL project automatizes
checks and controls, detects complex event patterns over time and helps operators with more
pertinent and meaningful information for system analysis.

2. The AAL project
The AAL project is meant at assuring a constant high quality of problem detection by
automating most of the monitoring tasks and providing real-time correlation of operational
data and system metrics. AAL guides operators and experts in their daily work, for this reason
is also known as ”The shifter assistant”. It performs a real-time analysis of the whole TDAQ
system, detecting problematic situations and misbehaviour and producing alerts suggesting
expected reactions. This project combines technologies coming from different disciplines, in
particular it leverages on an Event Driven Architecture to unify the flow of data to be monitored,
on a Complex Event Processing (CEP) engine for real time correlation of events and pattern
recognition and on a Message Queuing system for components integration and communication.
The picture in figure 1 presents an overview of the system together with the three operational
stages: information gathering, information processing and result distribution.

2.1. Information gathering
Evaluation of TDAQ working conditions requires data collection from multiple data sources,
each one with different technology, publication mechanism and format. AAL is able to gather
data from these different information providers in order to detect problems and failures. Farm
metrics, such as machines status and problems, are collected from the Nagios tool [3]. TDAQ
operational data is gathered via the streams of messages produced by applications via the
Message Reporting System (MRS) [4] and from the information published via the Information
Services (IS) by running applications. As illustrated in figure 1, system metrics and operational
data can be abstracted as a flow of information composed on many single events over time.
Moreover, AAL is also able to retrieve more static information at run time in a pull fashion via
reader plug-ins, such as the case for system topology from the configuration database.



Figure 1. Overview of the AAL project.

2.2. Information processing
Information processing is the key functionality of the tool. To detect problems and to perform
root cause analysis of failures AAL needs to correlate at real-time possibly different streams
of events, detecting specific time-based patterns previously defined by experts. The main
requirements for the processing system are:

• Real-time processing for fast error detection and reporting;
• Fine-grained information processing for specific event(s) detection;
• Events aggregation for detection of patterns over time or other properties;
• Effective representation of patterns and correlations, similar to the SQL query language for

database systems.

We found a very effective solution coming from the Complex Event Processing field of research,
mainly adopted in financial analysis and advanced system monitoring.

2.2.1. Complex Event Processing Complex Event Processing (CEP) [5] is one of the
fundamental techniques in the so called Operational Intelligent procedures [6], where the goal is
to to provide insight into business operations by running query analysis against live feeds and
event data. In the last decade it has been adopted in very different contexts, from financial
analysis to business process management and intelligent system monitoring. CEP systems are
meant to analyze and correlate streams of event, but the great advantages they offer is to
abstract events structure and to provide a standard language to express pattern and correlation
as queries.

2.2.2. Esper In the CEP world there are several solutions, both commercial and open source,
offering event processing functionalities based on SQL-like processing languages to express
patterns and rules. Esper [7] is a Complex Event Processing engine written in Java that offers
a very powerful Event Processing Language (EPL) with built-in capabilities for analysis over



time and event correlation. Esper is able to handle very high flow of data, thanks to a non-
persistent approach where events pass through memory and the engine continuously check for
the matching criteria expressed by queries. The continuous queries approach perfectly matches
with our real-time requirements and this, together with the powerful functionalities offered by
the EPL language, convinced us to adopt Esper for building the information processing engine
of AAL. EPL queries are used to express pattern describing problems and failures. The figure 2
illustrate graphical examples of types of patterns detect by AAL relying on Esper capabilities.

Figure 2. Simple and complex patterns detected by
the AAL engine.

Figure 3. Directive schema.

2.3. Knowledge engineering: directives and alerts
TDAQ system experts have to feed AAL with instructions about what situations to detect and
suggestions on how to react. This knowledge engineering process is fundamental to build and
maintain an up to date data set of problems and errors. These instructions, named directives,
are codified in XML documents and loaded by the engine at configuration time. Every directive
generates one or more alerts. An alert is composed of:

• Problem description: brief description of the problematic situations.
• Reaction: expected reaction to be performed by the operator.
• Domain(s): one or more category defining who should care about the problem. This

information is mainly used for routing of the alerts at visualization.
• Events details: events that triggered the alerts.

A directive, as represented in figure 3, is composed by two main elements: the query, that
is the Esper EPL statement that defines the event pattern to react on and the listener. The
listener defines alert details and one or more writers responsible for alert distribution. The same
alert can be produced by the engine in different formats by dedicated writers, as described in
section 3.2.

2.4. Alerts visualization and distribution
For a fast and effective reaction on system failures alerts have to be distributed in several ways
to operators and experts. The main goal is to build an effective real time visualization for
operators in the ATLAS control room, that need to promptly receive information with problem
details and expected reactions. Moreover, additional alert distribution strategies exist for remote
monitoring purpose. This has been accomplished with a generic architecture of the AAL engine,
as presented in section 3, and by a message oriented communication, presented in section 4.



Figure 4. The AAL engine architecture.

2.5. AAL components
The AAL project is composed of the following components:

• The AAL engine: a standalone Java-based service responsible for data collection and
information processing;

• The AAL web frontend:a web application to visualize and interact with alerts;
• A message broker for components communication.

3. The AAL engine
The main role of the AAL engine is to orchestrate the interactions between information providers
and the complex event processing engine, as shown in figure 4. It parses the knowledge base at
configuration time and it initializes all the corresponding queries and statements in Esper. It
then handles all the information gatherer components and create the writers and listeners ready
to produce alerts when patterns are detected. The flow of events coming from all data sources
is then constantly processed by the Esper engine and every time an event matches a directive
query or pattern the proper alert is created and distributed.

3.1. Injectors
The set of components responsible for data collection are called injectors, as shown in figure
4. Injectors implement a generic design that allows to extend the system with new information
sources without affecting the collection logic. Injectors specialization exists for the different
data source types but they expose functionalities via the same interface to the engine. For
data sources with high rate streams of event, like the IS servers that can reach up to 50 KHz
of information updates, injectors leverages on the CORBA-based IPC mechanism provided by
TDAQ infrastructure [8]. In other cases, like for the Nagios metrics, we hide the complexity of
the data source by using a message queuing system to collect and distribute information.

3.2. Writers
The writer components are responsible to codify and distribute alerts in specific formats. A
directive specifies one or more writers elements to define how the generated alert have to be
propagated. The default format is XML (Extensible Markup Language), suitable for machine-
based processing and distributed via the message queuing as described in section 4.1. But alerts
can also be written to file in more human-readable format or can be sent as standard TDAQ
application messages.



3.2.1. JMS writer To build a scalable and modular system we adopted a message oriented
architecture where the communication take place via exchanging messages. A message queuing
system, or message broker, is used to distribute alerts offering a publish/subscribe interface.
More information about the chosen tool is given in section 4.1. In order to be independent
from the message broker implementation the JMS writer send alert as a XML message using
the generic Java Message Service (JMS) API [9].

3.2.2. MRS writer To be compatible with the TDAQ architecture alerts can be distributed
also as MRS messages relying on the existing message reporting facilities [4].This functionality
is provided by the MRS writer. This integration allow to use the alert produced by AAL to
trigger automatic reaction and recovery procedures via the existing error recovery facilities [10].

3.2.3. Mail and RSS When a critical situation requires a prompt reaction from users and
experts alerts can be explicitly sent as e-mail to a set of addresses and can also be delivered as
sms thanks to the mail to sms service provided by CERN. Moreover, AAL relies on the message
broker functionalities to send alerts as a RSS feed stream, easy to integrate in any mail reader
or feed reader application.

Figure 5. Web application for alerts visualization.
Figure 6. Message oriented commu-
nication for modules interaction.

4. Web based visualization
Building a web based visualization service was the natural choice to gain independence from user
location, hardware and software, all critical features for a monitoring system. A Rich Internet
web Application (RIA) has been built allowing users to perform actions on the page and interact
with alerts visualized. The web application is developed using the Django framework [11]. Alerts
are collected by an archiver plug-in connected to the message broker via the Streaming Text
Orientated Messaging Protocol (STOMP) protocol. Once received, alerts are archived in a
SQLite database and made available to the web application. Web pages are automatically
updated when new messages arrive, providing a real-time feedback in case of problems.



Users can interact with the web page by making the following actions:

• Alerts can be marked as processed when the problem is addressed;
• Classes of alerts can be masked for a certain time interval;
• Select and sort alerts per properties (Date, Name, etc.).

Web pages have a basic structure composed by several sections, as presented in figure 5.
Every section is a table visualizing alerts that match with one or more criteria. The structure is
easily customizable, so experts can built their own page layout, defining which alerts they want
to receive in every sections.

4.1. Message oriented architecture
The figure 6 presents the different software involved in building the web visualization: a web
application, an alert archiver, the RSS server and possibly other generic alert consumers. As
introduced in the previous sections AAL relies on a message oriented communication where
a message queuing system, or message broker, distributes alerts offering a publish/subscribe
interface. We chose ActiveMQ as open source message broker from the Apache software
foundation [12]. It is compatible with the JMS [9] interface, the standard for message oriented
solutions, it supports multiple wire protocols and multiple network protocols. Moreover, it
provides several cross language clients for non-Java applications.

4.1.1. Network of message brokers The AAL engine runs on a dedicated host on the TDAQ
computing farm of the ATLAS experiment. Access to this computing facility is highly restricted
and direct communications are not possible from the general public CERN network. While
shifters operate from a control room inside this restricted area, experts are in most cases outside
this facility. To allow remote monitoring alerts produced by AAL have to be made available both
inside and outside the confined network. This is accomplished by a master-slave configuration
of 2 ActiveMQ instances. The master is running inside the TDAQ farm and it receives all the
alerts from the engine. It then forwards all messages to the slave instance, running on the public
network, via an outgoing TCP connection.

5. Use cases
The AAL tool is used in production to assist monitoring and operational procedures during
ATLAS data taking runs. More than 100 directives has been coded gathering requirements
from very different TDAQ domains. The following are some practical situations detected by the
tool and the corresponding EPL statements:

• analysis of problems reported by Nagios (the farm monitoring tool):
– select * from NagiosAlert(hostname regexp ’(?!pc-atlas-pub-[0-9]+.*’)

group by hostname output every 1 minute

• detect bunch of error messages as symptom of an issue that impact most of TDAQ
applications, such as the lost of connectivity for a read-out machine (ROS):

– select ROS from ROS.win:time(40 sec).std:groupwin(ROS, Message)
having size > 100 output first every 120 seconds

• detect critical amount of read-out errors on the detectors (not easy to spot by a human
eye):

– select Crate, NofBadLinks from SCTLinkErrorsCounter
having NofBadLinks > 400 and PARTITION IS RUNNING output every 2 minute



6. Conclusion
Effective monitoring and promptly error detection are fundamental properties for maximizing the
data taking efficiency of high energy physics experiments. The main goal of the AAL project is to
assist ATLAS operators with automated analysis of system conditions and intelligent reasoning
for root-cause problems analysis. AAL has been implemented leveraging on modern event
correlation techniques combined with message driven architecture for components integration
and web technology for alerts visualization. The tool has been quickly adopted in the ATLAS
TDAQ community and it gathered the interest from other groups with similar monitoring
requirements, such as networking and system administration.

The main area of research for the future is to investigate the possibility to build a learning
module to detect anomalies in an unsupervised manner, as proven by the HOLMES project [13].
Furthermore, the web interface will be extended to include directives management and system
administration together with improved user experience.

References
[1] ATLAS Collaboration 2008 The ATLAS Experiment at the CERN Large Hadron Collider. J. Inst., 3, S08003
[2] ATLAS Collaboration 2003 ATLAS High-Level Trigger, Data Acquisition and Controls Technical Design

Report http://cdsweb.cern.ch/record/616089/
[3] Nagios Enterprises http://nagios.org/
[4] Fedorko I 2007 The Message Reporting System of the ATLAS DAQ System Proc. Conf. on Astroparticle,

Particle, Space Physics Detectors and Medical Physics Applications (Como, Italy)
[5] Luckham D 2002 The Power of Events: An Introduction to Complex Event Processing in Distributed

Enterprise Systems (New York: Addison-Wesley Professional)
[6] Revised Selected Papers 2008 Business Intelligence for the Real-Time Enterprise Sec. Int. Workshop BIRTE

(Auckland, New Zealand)
[7] Bernhardt T The Esper project, http://esper.codehaus.org/
[8] Liko, D et al 2004 Control in the ATLAS TDAQ System. Computing in High Energy Physics and Nuclear

Physics. Interlaken, Switzerland
[9] Oracle-Sun The Java Message Service API http://docs.oracle.com/cd/B1409919/jms.htm

[10] Corso-Radu A, Garcia R M, Kazarov A, Miotto G L, Magnoni L and Sloper J 2010 Applications of expert
system technology in the Atlas TDAQ controls framework Int. Conf. on Software and Data Technologies.
(Athens, Grece)

[11] The Django software foundation Django framework https://www.djangoproject.com
[12] The Apache software foundation Activemq http://activemq.apache.org/
[13] Dos Santos Teixeira P H, Clemente R G, Kaiser R A and Vieira D A HOLMES: An event-driven solution

to monitor data centers through continuous queries and machine learning. Proc. Int. Conf. DEBS10
(Cambridge, UK)


