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Digital In-line Holography 

• A technique for 3D recording of small particulates 

– Droplets, fogs, plankton etc. 

• Laser beam trans-illuminates particles 

• Far-field diffraction pattern recorded by a CCD or 

CMOS pixel sensor. 

• Replay of each depth slice is computationally 

intensive. 
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Theory of in-line holography 
From: Hobson P.R. & Raouf A, Proceedings of SPIE. 1732 

(1993)  663-676 
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Replay a digital in-line hologram 
1 . Numerically multiply the hologram by the reference wave (for 

our configuration of in-line holography the reference wave is 1+0i) 

2. Take a Fourier transform 

3. and multiply the result by a transfer function based on the 

Rayleigh-Sommerfeld equation. 

4. An inverse Fourier transform gives the reconstructed image at 

one depth plane. 
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The in-focus objects, numerically 

replayed by computer 
An in-line hologram of a test target, 

captured from a CCIR videocamera 
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Processing sequence 

•Digital hologram is read from file 

•Image is zero-padded to power-of-two and set to complex by 

adding i0 

•A forward 2D FFT is applied to the array 

•A Transfer Function is applied, taking account of recording 

wavelength and desired image distance 

•A reverse 2D FFT is performed 

•The power spectrum is calculated and any zero-padding 

removed 

•The reconstructed image is written to a file 
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Memory Allocation 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

Main memory allocation is in four blocks: 

•HxW floats in Host memory 

•HxW floats in GPU memory 

•Two HxW complex in GPU memory 

(all floats and complex are single-precision) 
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File Read 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

Data are read from file into the host memory block as floats, possibly with 

zero-padding. 

PGM::readPGMImage() 

Input (float) 
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Data Transfer 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

Data are transferred into GPU memory. 

cudaMemcpy() 

Input (float) Input (float) 
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Forward FFT 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

A CUDA library real-to-complex FFT is performed, with the output placed 

in the second GPU buffer in packed form. 

fftw_executeR2C() 

Input (float) Input (float) 
FFT 

(packed complex) 
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Unpack Data 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

The packed transform data are unpacked in-place. 

unpack_complex() 

Input (float) Input (float) 

FFT (complex) 
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Transform FFT 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

The Transfer Function for a given distance from the detector is applied to 

the FFT, taking into account wavelength and pixel size; the results are 

stored in the third GPU buffer. 

applyTransferFunctionInFreqDomain() 

Input (float) Input (float) 

FFT (complex) 

Transfer 

Function 

(complex) 
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Reverse FFT 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

A reverse complex-to-complex FFT is applied in place to the modified data. 

This accounts for almost 40% of the GPU processor time. 

fftw_execute() 

Input (float) Input (float) 

FFT (complex) 
Reverse FFT 

 (complex) 



School of Engineering and Design 

Convert to Magnitudes 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

The magnitudes of the complex data are calculated and the resulting real 
data placed in the first GPU buffer. The cuPower16()function accounts 

for 18% of GPU processor time. 
cuPower16() 

Input (float) 

FFT (complex) 

Magnitude (float) 

Reverse FFT 

 (complex) 
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Remove Zero-padding 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

If the data were zero-padded, the portion of the buffer corresponding to the 

initial pixels is copied back to the third buffer using a 2D memory-copy 

routine. 

cudaMemcpy2D() 

Input (float) 

FFT (complex) 

Magnitude (float) Magnitude (float) 



School of Engineering and Design 

Normalise and Pack 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

The magnitude data has any constant offset removed and is then normalised 

to the required grey-scale level, the result being stored into the other buffer 

as unsigned 8- or 16-bit integers. 

normpack() 

Input (float) 

FFT (complex) 

Output (int) Output (int) 
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File Output: Transfer to Host 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

The packed integer data are now transferred back to the host. 

cudaMemcpy() 

FFT (complex) 

Output (int) Output (int) Output (int) 
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File Output: File Write 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

The output file is opened and the header written, before writing the integer 

data in a single binary write. 

fwrite() 

FFT (complex) 

Output (int) Output (int) Output (int) 
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Open GL: Transfer to Display 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

The packed integer data are now transferred to a data buffer set up by the 

OpenGL compatability library for display. 
cudaMemcpy() 

FFT (complex) 

Output (int) Output (int) 

HxW Byte 

Output (byte) 
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...and Loop! 

HxW Float HxW Float HxW Complex HxW Complex 

Host 
GPU 

If any more images are required at different distances, the programme 

continues looping from the transfer-function step (the forward FFT data 

remain in the second buffer); otherwise the buffers are deallocated and the 

programme terminated. 

applyTransferFunctionInFreqDomain() 

FFT (complex) 

OutputN-1 (int) OutputN-1 (int) 

Transfer 

FunctionN 

(complex) 
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From this 
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To this 
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Is a GPU a plug & play solution? 
Hologram: 2300x2500 px with 256 grey-levels, ASCII input, Times in cpu seconds  

 

    CPU (8 core) GPU (Tesla S1070* (4GB) x3 gpu; 3.24 Tflops) 

Read (ASCII)   2.55     2.52 (Serial) 

Forward FFT    6.27     0.16 (Parallel – 2 host/device transfers) 

Transfer Fn    1.20     1.17 (Serial) 

Reverse FFT    6.06     0.19 (Parallel – 2 host/device transfers) 

Write (ASCII)  1.37     1.40 (Serial) 

Total         17.46     5.46 

 Simple-minded use of a powerful GPU with existing code is not sensible! 

* S1070:  240 thread processors per gpu core, core clocked at 602 MHz 
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Code refactoring 
• Process several planes from one input and forward FFT to avoid expensive 

read.  Still requires transfer to/from device after serial transfer function 

calculation. 

• Careful tuning of the transfer function and the (ASCII) write gave modest 

gains. 

• After many code rearrangements, a way to parallelise inner loops of the 

transfer function was realised. 

• This allows the results of the forward FFT to be kept in the GPU for the 

transfer function and reverse FFT, so no data movement needed until output 

stage. 

• Transfer function time reduced to 0.08 s. 

• All calculations in single-precision. 

Also parallelise the transfer function – the key improvement 
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More refactoring 
• Calculate power spectrum and normalise within GPU. 

• Use a binary PGM file to cut write time to <0.01 s. 

• Using the three GPUs simultaneously, can process 13.6 frames/second 

(compared with rates of 0.057 for CPU alone, 0.183 for mixed CPU and 

GPU). 

 

 

• Note this result was with old V2.2 FFTW libraries for CUDA.  
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Real-world digital holography 

Two clearly different user cases for hologram visualisation: 

1) Expert user (e.g. a Marine Biologist) searches through video stream of 

replayed hologram depth slices looking for “interesting” objects. Very good use 

of the expert until she/he becomes bored! 

2) Expert image-processing system searches through replayed hologram image 

slices looking for “objects”. Set of objects then sent to classifier. 
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GPU video replay of holograms 

Some powerful NVidia GPU cards also have video outputs and there is an 

OpenGL compatability library available. 

For human visualisation these are ideal since one can efficiently copy (using 
cudaMemcpy()) the replayed hologram to the video buffer and overall 

performance is not compromised. 

Our latest results are: 

For a Tesla C2050*; CUDA 4.0; Driver 285.03; in a Xeon 5620 @ 2.40 

GHz, Ubuntu 10.10: 

 

2300x3500 hologram, padded to 4Kx4K   15.1 frames/s 

2048x1389 hologram, padded to 2Kx2K  41.2 frames/s 

 
* C2050:  448 thread processors in one gpu core, core clocked at 558 MHz 

http://www.youtube.com/watch?v=WiE82RjqMzI 
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What about Grid computing? 

• Hobson & Watson* proposed grid computing for 

silver-halide hologram image analysis (and 

digital hologram replay and analysis) nearly ten 

years ago. 

• Digital hologram replay is trivially parallel. 

• Large scale production grids (and clouds) are 

available. 

 
* Hobson P.R. & Watson J. “The principles and practice of holographic recording of plankton” J. Opt. A: Pure Appl. Opt. 4 (2002) S34 
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•Recorded volume: water tank 80 mm across, with 

cenospheres stirred into it (mostly 100-300 µm diameter).  

•Camera: Atmel Camelia camera (8 Mpixel, 12-bit depth). 

•Software: We have our own FFTW-based reconstruction 

software “HoloReco” for single image planes from in-line 

holograms. 

HoloReco source code compiles and runs both on  

Visual C++  on Windows XP, and with gcc on Linux. 

 

HoloReco is available from SourceForge.net 
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Method 
We submitted batches of Grid jobs each between 10 and 100 single 

slices to reconstruct the water tank with 0.1mm axial spacing 

(total 2200 slices = 91 GB), and looked at how long it took 

between starting the submission and the replayed images 

arriving back at the SE. 

 

Each job loops, replaying a slice and immediately sending it back 

to the SE. 

 

Compare this with replaying the slices sequentially on a single cpu. 

 Note: this grid performance data was shown at “EOS Blue Photonics”, Aberdeen, UK in August 2009. 
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Speed-up in practice 
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Recent results with grid 

• A second comparison, using “bwGrid” in 

Esslingen and an nVidia Tesla C1060* at Brunel 

both using 4-core Xeon X5550 host processors 

has been carried out in 2011.  

• In these tests we are writing to local storage the 

replayed images (no video). 

* C1060:  240 thread processors in one gpu core, core clocked at 602 MHz 
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CPU+GPU vs CPU alone 

Note: European comma notation = UK/US decimal point in timings (s) 
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Calculated values for sequential 

processing. 

 

Measured values for other 

categories. 
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Conclusions - 1 
• For digital hologram scanning by human expert with 

highly optimised code current GPU are clearly the 

hardware of choice. 

• We now have a highly GPU optimised version (> 200 

times faster) of HoloReco, with another ~10% to be 

gained from further refactoring. 

• Grids suffer from both non-deterministic return 

time/slice ordering of data and from the real 

possibility of non-completion of all depth slices. 
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Conclusions - 2 
• For the complete automation of all processing 

(hologram replay to classified object) the case is less 

clear. 3D image processing (IP) requires many depth-

slices to be available simultaneously on a node. 

• It is not clear that existing IP software libraries used 

on conventional x86 systems will be ported efficiently 

to GPU architecture (legacy code issue). 

• Possibly a hybrid “GPU + Grid/Cloud” approach is 

currently the optimum. 
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