
School of Engineering and Design

Challenges in using GPUs for the

reconstruction of digital hologram

images.

Ivan D Reid, Jindrich Nebrensky, Peter R Hobson
Centre for Sensors & Instrumentation

Presented at ACAT, Brunel, 6th September 2011

School of Engineering and Design

Outline

• Digital holography in 5 minutes

• Replay of holograms using nVidia GPU

• Replay of holograms using Grid resources

• Conclusions

School of Engineering and Design

Digital In-line Holography

• A technique for 3D recording of small particulates

– Droplets, fogs, plankton etc.

• Laser beam trans-illuminates particles

• Far-field diffraction pattern recorded by a CCD or

CMOS pixel sensor.

• Replay of each depth slice is computationally

intensive.

School of Engineering and Design

Theory of in-line holography
From: Hobson P.R. & Raouf A, Proceedings of SPIE. 1732

(1993) 663-676

School of Engineering and Design

Replay a digital in-line hologram
1 . Numerically multiply the hologram by the reference wave (for

our configuration of in-line holography the reference wave is 1+0i)

2. Take a Fourier transform

3. and multiply the result by a transfer function based on the

Rayleigh-Sommerfeld equation.

4. An inverse Fourier transform gives the reconstructed image at

one depth plane.

School of Engineering and Design

The in-focus objects, numerically

replayed by computer
An in-line hologram of a test target,

captured from a CCIR videocamera

School of Engineering and Design

Processing sequence

•Digital hologram is read from file

•Image is zero-padded to power-of-two and set to complex by

adding i0

•A forward 2D FFT is applied to the array

•A Transfer Function is applied, taking account of recording

wavelength and desired image distance

•A reverse 2D FFT is performed

•The power spectrum is calculated and any zero-padding

removed

•The reconstructed image is written to a file

School of Engineering and Design

Memory Allocation

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

Main memory allocation is in four blocks:

•HxW floats in Host memory

•HxW floats in GPU memory

•Two HxW complex in GPU memory

(all floats and complex are single-precision)

School of Engineering and Design

File Read

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

Data are read from file into the host memory block as floats, possibly with

zero-padding.

PGM::readPGMImage()

Input (float)

School of Engineering and Design

Data Transfer

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

Data are transferred into GPU memory.

cudaMemcpy()

Input (float) Input (float)

School of Engineering and Design

Forward FFT

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

A CUDA library real-to-complex FFT is performed, with the output placed

in the second GPU buffer in packed form.

fftw_executeR2C()

Input (float) Input (float)
FFT

(packed complex)

School of Engineering and Design

Unpack Data

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

The packed transform data are unpacked in-place.

unpack_complex()

Input (float) Input (float)

FFT (complex)

School of Engineering and Design

Transform FFT

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

The Transfer Function for a given distance from the detector is applied to

the FFT, taking into account wavelength and pixel size; the results are

stored in the third GPU buffer.

applyTransferFunctionInFreqDomain()

Input (float) Input (float)

FFT (complex)

Transfer

Function

(complex)

School of Engineering and Design

Reverse FFT

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

A reverse complex-to-complex FFT is applied in place to the modified data.

This accounts for almost 40% of the GPU processor time.

fftw_execute()

Input (float) Input (float)

FFT (complex)
Reverse FFT

 (complex)

School of Engineering and Design

Convert to Magnitudes

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

The magnitudes of the complex data are calculated and the resulting real
data placed in the first GPU buffer. The cuPower16()function accounts

for 18% of GPU processor time.
cuPower16()

Input (float)

FFT (complex)

Magnitude (float)

Reverse FFT

 (complex)

School of Engineering and Design

Remove Zero-padding

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

If the data were zero-padded, the portion of the buffer corresponding to the

initial pixels is copied back to the third buffer using a 2D memory-copy

routine.

cudaMemcpy2D()

Input (float)

FFT (complex)

Magnitude (float) Magnitude (float)

School of Engineering and Design

Normalise and Pack

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

The magnitude data has any constant offset removed and is then normalised

to the required grey-scale level, the result being stored into the other buffer

as unsigned 8- or 16-bit integers.

normpack()

Input (float)

FFT (complex)

Output (int) Output (int)

School of Engineering and Design

File Output: Transfer to Host

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

The packed integer data are now transferred back to the host.

cudaMemcpy()

FFT (complex)

Output (int) Output (int) Output (int)

School of Engineering and Design

File Output: File Write

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

The output file is opened and the header written, before writing the integer

data in a single binary write.

fwrite()

FFT (complex)

Output (int) Output (int) Output (int)

School of Engineering and Design

Open GL: Transfer to Display

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

The packed integer data are now transferred to a data buffer set up by the

OpenGL compatability library for display.
cudaMemcpy()

FFT (complex)

Output (int) Output (int)

HxW Byte

Output (byte)

School of Engineering and Design

...and Loop!

HxW Float HxW Float HxW Complex HxW Complex

Host
GPU

If any more images are required at different distances, the programme

continues looping from the transfer-function step (the forward FFT data

remain in the second buffer); otherwise the buffers are deallocated and the

programme terminated.

applyTransferFunctionInFreqDomain()

FFT (complex)

OutputN-1 (int) OutputN-1 (int)

Transfer

FunctionN

(complex)

School of Engineering and Design

From this

School of Engineering and Design

To this

School of Engineering and Design

Is a GPU a plug & play solution?
Hologram: 2300x2500 px with 256 grey-levels, ASCII input, Times in cpu seconds

 CPU (8 core) GPU (Tesla S1070* (4GB) x3 gpu; 3.24 Tflops)

Read (ASCII) 2.55 2.52 (Serial)

Forward FFT 6.27 0.16 (Parallel – 2 host/device transfers)

Transfer Fn 1.20 1.17 (Serial)

Reverse FFT 6.06 0.19 (Parallel – 2 host/device transfers)

Write (ASCII) 1.37 1.40 (Serial)

Total 17.46 5.46

 Simple-minded use of a powerful GPU with existing code is not sensible!

* S1070: 240 thread processors per gpu core, core clocked at 602 MHz

School of Engineering and Design

Code refactoring
• Process several planes from one input and forward FFT to avoid expensive

read. Still requires transfer to/from device after serial transfer function

calculation.

• Careful tuning of the transfer function and the (ASCII) write gave modest

gains.

• After many code rearrangements, a way to parallelise inner loops of the

transfer function was realised.

• This allows the results of the forward FFT to be kept in the GPU for the

transfer function and reverse FFT, so no data movement needed until output

stage.

• Transfer function time reduced to 0.08 s.

• All calculations in single-precision.

Also parallelise the transfer function – the key improvement

School of Engineering and Design

More refactoring
• Calculate power spectrum and normalise within GPU.

• Use a binary PGM file to cut write time to <0.01 s.

• Using the three GPUs simultaneously, can process 13.6 frames/second

(compared with rates of 0.057 for CPU alone, 0.183 for mixed CPU and

GPU).

• Note this result was with old V2.2 FFTW libraries for CUDA.

School of Engineering and Design

Real-world digital holography

Two clearly different user cases for hologram visualisation:

1) Expert user (e.g. a Marine Biologist) searches through video stream of

replayed hologram depth slices looking for “interesting” objects. Very good use

of the expert until she/he becomes bored!

2) Expert image-processing system searches through replayed hologram image

slices looking for “objects”. Set of objects then sent to classifier.

School of Engineering and Design

GPU video replay of holograms

Some powerful NVidia GPU cards also have video outputs and there is an

OpenGL compatability library available.

For human visualisation these are ideal since one can efficiently copy (using
cudaMemcpy()) the replayed hologram to the video buffer and overall

performance is not compromised.

Our latest results are:

For a Tesla C2050*; CUDA 4.0; Driver 285.03; in a Xeon 5620 @ 2.40

GHz, Ubuntu 10.10:

2300x3500 hologram, padded to 4Kx4K 15.1 frames/s

2048x1389 hologram, padded to 2Kx2K 41.2 frames/s

* C2050: 448 thread processors in one gpu core, core clocked at 558 MHz

http://www.youtube.com/watch?v=WiE82RjqMzI

School of Engineering and Design

What about Grid computing?

• Hobson & Watson* proposed grid computing for

silver-halide hologram image analysis (and

digital hologram replay and analysis) nearly ten

years ago.

• Digital hologram replay is trivially parallel.

• Large scale production grids (and clouds) are

available.

* Hobson P.R. & Watson J. “The principles and practice of holographic recording of plankton” J. Opt. A: Pure Appl. Opt. 4 (2002) S34

School of Engineering and Design

•Recorded volume: water tank 80 mm across, with

cenospheres stirred into it (mostly 100-300 µm diameter).

•Camera: Atmel Camelia camera (8 Mpixel, 12-bit depth).

•Software: We have our own FFTW-based reconstruction

software “HoloReco” for single image planes from in-line

holograms.

HoloReco source code compiles and runs both on

Visual C++ on Windows XP, and with gcc on Linux.

HoloReco is available from SourceForge.net

School of Engineering and Design

Method
We submitted batches of Grid jobs each between 10 and 100 single

slices to reconstruct the water tank with 0.1mm axial spacing

(total 2200 slices = 91 GB), and looked at how long it took

between starting the submission and the replayed images

arriving back at the SE.

Each job loops, replaying a slice and immediately sending it back

to the SE.

Compare this with replaying the slices sequentially on a single cpu.

 Note: this grid performance data was shown at “EOS Blue Photonics”, Aberdeen, UK in August 2009.

School of Engineering and Design

0

500

1000

1500

2000

2500

00:00:00 02:24:00 04:48:00 07:12:00 09:36:00 12:00:00

Time since start of job submission

P
la

n
e
s

 r
e
tr

ie
v
e
d

10 slices 1

10 slices 2

10 slices 3

50 slices

100 slices I

100 slices II

100 slices III

100 slices IV

100 slices V

Reference y

1

2

3

50 III

III

IV

V

Knee of Doom

Single dedicated cpu

Job Progress

School of Engineering and Design

Speed-up in practice

0.0

5.0

10.0

15.0

20.0

50% 70% 90% 100%

Percentage of 2200 slices completed

A
v
e
ra

g
e
 s

p
e
e
d

-u
p

 f
a
c
to

r

10 slices per job

100 slices per job

School of Engineering and Design

Recent results with grid

• A second comparison, using “bwGrid” in

Esslingen and an nVidia Tesla C1060* at Brunel

both using 4-core Xeon X5550 host processors

has been carried out in 2011.

• In these tests we are writing to local storage the

replayed images (no video).

* C1060: 240 thread processors in one gpu core, core clocked at 602 MHz

School of Engineering and Design

CPU+GPU vs CPU alone

Note: European comma notation = UK/US decimal point in timings (s)

School of Engineering and Design

Calculated values for sequential

processing.

Measured values for other

categories.

School of Engineering and Design

Conclusions - 1
• For digital hologram scanning by human expert with

highly optimised code current GPU are clearly the

hardware of choice.

• We now have a highly GPU optimised version (> 200

times faster) of HoloReco, with another ~10% to be

gained from further refactoring.

• Grids suffer from both non-deterministic return

time/slice ordering of data and from the real

possibility of non-completion of all depth slices.

School of Engineering and Design

Conclusions - 2
• For the complete automation of all processing

(hologram replay to classified object) the case is less

clear. 3D image processing (IP) requires many depth-

slices to be available simultaneously on a node.

• It is not clear that existing IP software libraries used

on conventional x86 systems will be ported efficiently

to GPU architecture (legacy code issue).

• Possibly a hybrid “GPU + Grid/Cloud” approach is

currently the optimum.

School of Engineering and Design

Acknowledgements

• Access to the S1070 GPU system was generously

provided by Viglen (UK).

• GridPP and London Tier 2 institutes for UK grid

resources supporting the LTWO VO.

• HS Esslingen for “bwGrid” resources in Germany.

• Sven Sander for running jobs and providing data using

bwGrid.

