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Abstract. Background properties in experimental particle physics are typically estimated
from control samples corresponding to large numbers of events. This can provide precise
knowledge of average background distributions, but typically does not take into account
statistical fluctuations in a data set of interest. A mnovel approach based on mixture model
decomposition is presented, as a way to extract additional information about statistical
fluctuations from a given data set with a view to improving on knowledge of background
distributions obtained from control samples. Events are treated as heterogeneous populations
comprising particles originating from different processes, and individual particles are mapped
to a process of interest on a probabilistic basis. The proposed approach makes it possible
to estimate features of the background distributions from the data, and to extract information
about statistical fluctuations that would otherwise be lost using traditional supervised classifiers
trained on high-statistics control samples. A feasibility study on Monte Carlo is presented,
together with a comparison with existing techniques. Finally, the prospects for the development
of tools for intensive offline analysis of individual interesting events at the Large Hadron Collider
are discussed.

1. Introduction

Background discrimination in particle physics is usually performed by identifing events that
are more likely to contain a physics process of interest, the primary goal being rejection of
contributions from uninteresting processes that mimic the signal and thus make its extraction
and measurement more complicated. Traditional approaches achieve this goal by focussing on
entire events, comparing kinematic and topological properties with reference distributions usually
obtained from control samples.

This article presents a novel approach that builds on a population-based view of particle
physics events, which are treated as mixtures of subpopulations comprising particles originating
from different physics processes such as a hard scattering of interest as opposed to background.
The main goal is to decompose an input data set by assigning individual particles a probability
for them to originate from a given process based on particle-level information.

This is achieved by adapting and applying mixture decomposition techniques [1] that are
well established in statistics and that have been used in other disciplines to solve formally-
similar problems. In this formulation, events are treated as heterogeneous statistical populations
comprising particles whose kinematics reflects the process they originated from.



This contribution describes an initial investigation of the possibility to use mixture model
decomposition techniques for background discrimination at the Large Hadron Collider (LHC).
The study is based on a sampling algorithm inspired by the Gibbs sampler [2] and by Expectation
Maximization (EM) |3] whose goal is to decompose an input data set into collections of particles
originating from a hard scattering of interest as opposed to background, mapping individual
particles to signal or background on a probabilistic basis. A number of well-established methods
and results set a context for this investigation in addition to the Gibbs sampler and to EM, namely
(i) other simulation-based methods such as [4], (ii) a more general use of Markov Chain Monte
Carlo (MCMC) techniques, recently applied to the study of the Cosmic Microwave Background
radiation [5], (iii) a recent renewed interest in Bayesian numerical methods for data analysis
in particle physics [6] [7] [8], in addition to (iv) the use of MCMC with reference to specific
optimization problems in the field [9].

In this study, the proposed sampling algorithm was used to classify individual particles into
signal and background. Results obtained on a collection of ~ 600 simulated particles from a
hard scattering and from background are presented and discussed in this article, together with
cross-checks on toy Monte Carlo as described in the appendix.

In general, different events in particle physics can look very different from one another even
when the underlying physics processes are the same, and statistical fluctuations can be non-
negligible in low-statistics data sets. When classification is performed using traditional supervised
algorithms, fluctuations are usually not taken into account, since training typically relies on
high-statistics control samples. On the other hand, the algorithm presented in this article can
estimate properties of signal and background probability density functions (PDFs) from the
data: in principle, this makes it possible to use information obtained from a data set of interest
to improve on the description of background PDFs obtained from control samples, which do not
normally take statistical fluctuations into account.

From a broader perspective, this contribution illustrates a new population-based approach
that aims to improve on the description of background PDFs obtained from a high-statistics
control sample by using information about statistical fluctuations extracted from a lower-
statistics data set: this is done by assigning individual particles a probability for them to originate
from signal or background, i.e. by decomposing an input collection of particles into signal and
background-associated subpopulations.

2. The sampling algorithm
This approach to background discrimination is presented with reference to the general problem
of decomposing a collection of particles from high-energy particle collisions into subpopulations
associated with different underlying physics processes and described in terms of different PDFs.

The input data set consists of a mixture of particles, some of which originated from a hard
scattering of interest, others from background. Provided that the corresponding subpopulations
can be characterized sufficiently well in terms of their kinematic or topological properties, it is in
principle possible to ask, for each particle, what the probability is for it to originate from signal
as opposed to background. In particular, the proposed algorithm estimates such probabilities by
iteratively sampling from subpopulation PDFs.

As opposed to classical mixture models, which typically rely on a parametric formulation
requiring the shapes of the subpopulation PDFs to be known a priori, our formulation is based
on a more general mixture of the form

K
> a;fi() (1)
j=1

where the PDFs f; satisfy a set of constraints associated with a histogram regularization



procedure as outlined in section 3. Subpopulation fractions a; (“mixture weights") are required
to sum to unity, i.e. ZJK:1 aj = 1.

The variable x can correspond to particle pseudorapidity 7, a kinematic variable related to
the particle polar angle 6 in the laboratory frame in terms of n = —In(tanf/2), or pr i.e. the
transverse momentum of the particle with respect to the beam direction. The subpopulation
PDFs f; are defined in terms of regularized histograms of x, as described in section 3, where the
associated constraints imposed on the PDFs are detailed. The symbol ¢; will be used to denote
the estimate of the generic subpopulation PDF f; throughout the text.

The choice of (1) was driven by our previous studies, where assuming a predefined PDF
functional form led to significant bias on mixture weight estimates. That bias ultimately related
to assuming that PDFs obtained from high-statistics control samples were also appropriate to
describe the corresponding probability distributions in a lower-statistics data set. However,
statistical fluctuations are sometimes appreciable, and for this reason it is necessary for the
model to provide more flexibility if fluctuations in the data set of interest are to be described.
While a rigorous treatment may call for the use of nonparametric Bayesian methods [10], which
can be used to provide an additional dimension of flexibility to statistical models, it was decided
to adopt a simplified intuition-driven approach for this study, in order to avoid introducing
additional complications not related to the algorithm itself in this phase of the development.

The histogram regularization procedure described in section 3 can be seen as a simplified
version of established methods such as Tikhonov regularization [11], which can be used to impose
smoothness constraints to a likelihood maximization problem. From a conceptual point of view,
an alternative way of interpreting the model used in this study is as a simplified version of
established kernel or wavelet-based techniques, where regularized histograms effectively play the
role of a set of basis functions. In the absence of any constraints to the PDFs in the mixture,
the statistical model (1) would instead not be well defined, so this is an essential ingredient.
Additional remarks about existence and uniqueness of a stationary distribution for the Markov
Chain associated with the algorithm in the configuration used for this study will be provided in
section 3 after the discussion of the Monte Carlo analysis.

Given the mixture of probability distributions (1) and a set of observations {z;}i—1 . n, the
problem of clustering the latter into K groups by probabilistically associating each of them
with a distribution of origin has been solved numerically in a Bayesian framework using MCMC
techniques. In particular, the Gibbs sampler [1], which directly inspired this work, has been used
for this purpose in different disciplines.

The basic pseudocode of the proposed sampling algorithm is reported below. The value of
variable v at iteration ¢ is indicated with v® throughout.

(i) Initialization: Choose o(?) = {ag-o) }; and f;o):gog-o), j =1,..., K as described in section 3.
(ii) Iteration t:
(a) Generate the allocation variables A 5= 1,...N, 7 =1,..., K based on probabilities

ij
P(zi(;) = 1\a§t71), gog-tfl),xi) proportional to ag»t*l)f(xﬂgog-t*l)). The quantity zz(;) equals

1 when observation ¢ is mapped to distribution j at iteration ¢, and 0 otherwise. In
(*)

general, the variables z;;° depend both on the mixture weights «; and on the estimates
@; of the subpopulation PDFs from the previous iteration.

(b) Generate ¥ from the probability density function of a given z(~1 = {zz-(]t-fl)}ij,
plalz®1). Knowledge of which particles are mapped to process j at iteration ¢ — 1
makes it possible to generate the subpopulation fractions « at iteration ¢.

(c) Obtain an updated estimate of the subpopulation PDFs from the data x based on
knowledge of which particles are mapped to subpopulation j at iteration ¢ — 1. Details

are provided in section 3.



A specific choice for the function p and a way to obtain updated estimates of the subpopulation
PDFs f; are described in section 3 with reference to the Monte Carlo study.

The central idea of the algorithm is the following: the better the observations {z;}; are
mapped to the subpopulations j = 1,..., K, the more accurate the estimates of p(alz) and of
the subpopulation PDFs ¢;. Once some correct values of z;; are found, p(a|z) and ¢; begin to
roughly reflect the correct distributions, which in turn leads to additional correct mappings z;;
to be found at subsequent iterations.

The above pseudocode corresponds exactly to the Gibbs sampler, where updated estimates of
subpopulation PDFs are obtained at each iteration, as indicated at step (c¢). On the other hand,
when step (c) is removed from the pseudocode, particles are mapped to signal and background
based on the subpopulation PDFs provided at initialization, and the algorithm is then more
akin to EM. Throughout the paper we will refer to the two versions of the algorithm with step
(c) included or not in the pseudocode as “unconstrained sampler" and “constrained sampler",
respectively.

The primary objective of this article is to study the use of the proposed sampling technique
in different configurations in order to:

(i) Obtain estimates ¢; of the subpopulation PDFs from the input data set.

(ii) Estimate the subpopulation weights «;. In the context of this study, this corresponds to
estimating the fractions of background and signal particles contained in the input data set.

(iii) Assign individual particles a probability for them to originate from a given process based
on the subpopulation PDFs estimated at step (i) as opposed to relying exclusively on high-
statistics templates. In the context of this study, this allows classification of individual
particles into signal and background.

3. Monte Carlo study

The algorithm was applied to a Monte Carlo data set generated using Pythia 8.140 [12] [13],
obtained superimposing gg — tt signal events from pp interactions at /s = 14 TeV to soft QCD
interactions, so called Minimum Bias events, in order to simulate background. The signal process
was chosen in order to illustrate the use of the algorithm for background discrimination at the
particle level. Further studies will be needed in order to extend these results beyond the initial
investigation presented in this article, and to assess the potential of population-based techniques
for background discrimination in the context of specific analyses at the LHC.

The sampler was run over a collection of charged particles with 2 GeV/c < pr < 5 GeV/c,
and individual particles were assigned a probability for them to originate from signal as opposed
to background based on their 1 and pr values.

The pseudocode of the algorithm used for this application is shown below. Subscripts sig and
bkg relate to signal and background, respectively.

(0) (0)
J J
of the subpopulation PDFs fj(o) are given by regularized n and pr distributions from the
high-statistics control sample, as described in section 3.1.

(i) Initialization: Set apry = aéz)g = 0.5, fj = ¢; . Initial conditions for the estimates ¢

(ii) Iteration t¢:

(a) Generate 29 for all particles (i = 1,..., N) and distributions (j = 1,2 corresponding

ij
() (t=1) (t-1)

to background and signal, respectively) according to P(z;; = la; 7, p; 7, x;) o
—1 —1
ozg»t )fj(asi\gpgt )), where a1 = apig, a2 = 1 — apg-
(b) Set ag»t) = izg*l) /N, Vj. This corresponds to the simplest choice of setting

pla;2D) = §(aj — Z-zz-(]t-fl)/N) for the probability density function of « given z.
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Figure 1. (a) Generator-level 1 and pp distributions for signal (solid green histograms) and
background particles (dashed red histograms) with 2 GeV/c < pr < 5 GeV/c from the high-
statistics control sample. The distributions correspond to a total number of ~ 33,000 particles
and are normalized to unit area. (b) The corresponding two-dimensional distribution.

(c) Obtain updated estimates of the subpopulation PDFs by regularizing the n and prp
distributions corresponding to particles mapped to the relevant subpopulation at
(t=1)

iteration ¢ — 1, i.e. based on z;;

In general, the functions f; are the joint PDFs for n and pr corresponding to background
(j = 1) and signal (j = 2) particles. This study is restricted to charged particles with
2 GeV/c < pr < 5 GeV/c, which makes it possible to neglect the correlation between 7 and pr

as a first approximation. For this reason, the joint PDFs take the form [y, /prg = fs(?g) Ibkg fs(fgrl})bkg7
and obtaining updated estimates of the subpopulation PDFs reduces to regularization of one-
dimensional histograms, as described in the following.

As for the number of iterations to be used with the algorithm, no rule is documented in the
statistics literature with reference to related techniques, and the choice is generally problem-
dependent. The number of iterations was set to 1,000 in this study, and probabilities were
averaged over the last 100 iterations. Runs were also performed letting the sampler run for
a longer time: the algorithm exhibited a relatively fast convergence on the data set analyzed,
and no gain was found in choosing a higher number of iterations. Moreover, multiple runs were
performed under different initial conditions in order to make sure that the algorithm converged.
In particular, the initial conditions for the subpopulation PDFs were perturbed by using different
initial conditions for the fits to the high-statistics distributions from the control sample. Similarly,
the generation parameters in the toy Monte Carlo study were varied around their nominal values
by +10%, with no appreciable difference in the results.

In order to obtain initial conditions gog-o) for the subpopulation PDFs, a Monte Carlo data
set was used containing a total of about 33,000 charged particles in the kinematic range

2 GeV/c < pr < 5 GeV/c. In addition to estimation of gog-o), this high-statistics control sample



was also used to guide the histogram regularization procedure as described in the following.
Figure 1 (a) shows the n and pp distributions for signal and background particles (solid green
and dashed red histograms, respectively).

As anticipated, one of the goals of the sampler is to estimate the background PDFs from the
input collection of particles. In other words, the algorithm classifies particles into signal and
background without relying exclusively on predefined background templates: the background
PDFs that are estimated by the algorithm are thus expected to reflect the specific background
conditions in the input data set, which can be different from the average conditions obtained
from a high-statistics control sample.

The algorithm basically tries to uncover a signal and a background subpopulation in the input
collection of particles based on the data and on initial conditions on the subpopulation PDFs.
The results presented in this article relate to an input data set comprising 636 charged particles
in the kinematic region 2 GeV/c < pr < 5 GeV/c, out of which 481 originate from a signal
hard process and 155 from background, corresponding to a fraction of background particles of
~ 24%. The total number of particles in the input data set is in line with typical charged particle
multiplicities at the LHC as of July 2011.

The signal and background n and pr distributions corresponding to the Monte Carlo input
data set used in this study are shown in figure 2. The solid green (dashed red) histograms in
the upper panel display the signal (background) 7 distributions, normalized to unit area. The
corresponding pr distributions are given in the lower panel. It is worth noticing that some
of these distributions are appreciably different from the corresponding ones obtained from the
control sample due to statistical fluctuations, as expected. In particular, the background 7
distribution exhibits two modes that are shifted with respect to zero, while the corresponding
distribution from the control sample is centered around zero.

In order to illustrate the histogram regularization procedure used in this study, figure 3 shows
an example of the 7 distribution of particles mapped to the signal subpopulation at a given
iteration of the algorithm. As opposed to assuming a functional form for the PDF and fitting a
function to the histogram, the histogram is regularized i.e. the subpopulation PDF is obtained
by means of spline interpolation of the histogram contents, as further discussed in the following.
The superimposed curve on the figure corresponds to the regularized histogram, and is used by
the algorithm as an estimate of the corresponding subpopulation PDF.

As anticipated, this approach gives the algorithm more flexibility in terms of estimating the
subpopulation PDFs from the input data set with respect to our previous attempts relying on a
predefined PDF functional form, while still leading to a well-defined target distribution for the
associated Markov Chain.

3.1. Regularization

Step (c) in the pseudocode shown in section 3 requires iterative PDF updates based on current
mapping of individual particles to different subpopulations. This operation is performed when
the algorithm is operated in unconstrained mode, as discussed below.

As anticipated, it was decided to adopt a simplified statistical model for the purpose of
this investigation, while at the same time providing enough flexibility for the algorithm to be
able to describe fluctuations. In the context of this study, this was done by performing spline
interpolation of one-dimensional n and pr histograms. As previously mentioned, this can be seen
as a simplified version of established regularization techniques, for instance as a way to use a
priori information about the underlying distributions in order to get rid of spurious oscillatory
components (such methods have been analyzed in detail in particle physics in order to develop
unfolding procedures, with a view to ‘removing" detector effects from observed distributions, see
e.g. [14]).

The complexity of the histogram regularization procedure that was used in this study was
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intentionally kept minimal in order to avoid the introduction of additional complications that
might obscure the response of the algorithm at this stage of the development. Further studies
will be needed in order to understand in detail how results are affected by the regularization
procedure.

In the context of this investigation, a priori information about signal and background
PDFs was obtained from the high-statistics control sample. When subpopulation PDFs are
updated iteratively during the execution of the sampler, i.e. when the algorithm is operated
in unconstrained mode, a “regularization window" is applied to the n histograms in order to
get rid of outliers: in other words, a spline interpolation of the histogram contents is obtained
using only the part of the histogram that lies between a minimum and a maximum 7 value,
which leads to extreme statistical fluctuations on the tails of the distribution to be excluded. It
is worth noticing that assuming a functional form for the PDF and fitting it to the histogram
would effectively produce a similar result, i.e. it would reduce the impact of outliers on the
estimated PDF. However, as anticipated, that approach was observed to introduce significant
bias in previous studies, and was thus abandoned in favor of the statistical model presented in
(1), where subpopulation PDFs are defined as the output of a histogram regularization procedure
without reference to any predefined functional form, but still subject to regularization constraints.
Figure 4 shows signal (solid green) and background (dashed red) n distributions from the high-
statistics control sample, with superimposed arrows indicating the regularization window. The
maximum |7| value was set to |n| =5 (|| = 7) for signal (background).

On top of this, again with a view to getting rid of extreme statistical fluctuations
when regularizing histograms, boundary conditions were introduced on the 1 and pr PDFs,
constraining the value of f; to points chosen based on control sample distributions: in particular,
the signal (background) n PDF was constrained to 0 when |n| > 5 (|n| > 7), and signal
(background) pr PDFs were constrained at 2 GeV/c and 5 GeV/c to 0.7 (1.2) and 0.1 (0)
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(see figure 1(a)).
Results were found to be stable with respect to reasonable changes to the above regularization
contraints.

3.2. Choice of configuration
As anticipated, the algorithm can be operated in unconstrained or constrained mode, depending
on whether step (c) in the pseudocode given in section 3 is included or not.

As already pointed out in section 2, the algorithm can process an input collection of particles
in order to obtain one or more of the following results:

(i) Estimate the subpopulation PDFs from the input data set.

(ii) Estimate the fraction of particles associated with a given process in the input data set, e.g.
the fraction of background particles.

(iii) Assign individual particles a probability for them to originate from a given process, such
as a hard scattering of interest as opposed to background, based on subpopulation PDFs
estimated at step (i) as opposed to relying on predefined templates that reflect average
background conditions.

Depending on the objective, it may be appropriate to run the algorithm in different modes.

For instance, the histogram regularization procedure that is used here to obtain iterative
estimates of the subpopulation PDFs when the algorithm is operated in unconstrained mode
inherently leads to bias on mixture weights, because imposing a regularization window changes
the number of particles that are mapped to signal or background at a given iteration. For this
reason, it may be more appropriate to use a different approach in order to estimate the fraction
of background particles.

One option is described below:

(a) The constrained sampler is first used to estimate the mixture weights. In the two-
subpopulation scenario described in this study, goal (ii) above corresponds to estimating
the fraction of background particles contained in the input data set. The initial conditions

for the mixture weights are ago) = ago) = 0.5, corresponding to no prior knowledge about

the fraction of background particles in the input sample. The subpopulation PDFs are kept
fixed at the estimates provided by the high-statistics control sample. The corresponding

results are described in section 3.2.1.
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(b) The algorithm is then run again on the input data set in unconstrained mode, i.e.
subpopulation PDFs are now updated at each iteration, starting from initial conditions
corresponding to regularized distributions from the high-statistics control sample. However,
mixture weights are kept fixed at the results from the previous step.

It is worth noticing that the algorithm differs from a proper Gibbs sampler in both cases.

As for assigning individual particles in the input data set a probability for them to originate
from signal as opposed to background, the most appropriate approach may again depend on the
specific application. In general, probabilities may be assigned directly using the unconstrained
sampler at step (b) above, as done in this study, or an additional run of the algorithm in
constrained mode may alternatively be added after the previous two, with fixed PDFs given by
the estimates from step (b). Further studies will be necessary in order to better understand the
classification performance of the algorithm in different configurations and to guide this choice.

Results obtained running the constrained an unconstrained sampler as described above on
the Monte Carlo input data set used in this study are reported and discussed in the following
sections.

3.2.1. Constrained sampler As anticipated, the algorithm in constrained mode was primarily
used in this study in order to estimate mixture weights, i.e. the fraction of background particles
in the input data set. Figure 5 shows the corresponding estimates over the last 100 iterations.
The solid green and dashed red curves correspond to the estimated fractions of signal and
background particles, respectively. The solid green (dashed red) horizontal line indicates the
signal (background) true value from the simulation, while the dash-dot line corresponds to the
initial conditions for the mixture weights.



Additional runs on toy Monte Carlo samples were performed as a cross-check, as described in
the appendix. In particular, figure 6 displays the estimated mixture weights obtained by running
the constrained sampler on a toy Monte Carlo data set with subpopulation PDFs kept fixed at
truth information.

3.2.2. Unconstrained sampler The unconstrained sampler was used in this study in order to
estimate the signal and background PDFs from the input data set, while keeping the mixture
weights fixed at the results obtained from the previous run of the algorithm in constrained mode.

Figure 7 shows the subpopulation PDFs estimated by the algorithm on the Monte Carlo
input data set. The curves correspond to the output of the histogram regularization procedure
averaged over the last 100 iterations, superimposed to the true distributions (histograms). The 7
(pr) distributions are displayed in the top (bottom) plots, figures on the left-hand (right-hand)
side correponding to background (signal). All distributions are normalized to unit area. The
bottom panel in each figure shows the corresponding ratio between the relevant subpopulation
PDF estimated by the algorithm and truth information.

The figure illustrates a distinctive characteristic of the proposed algorithm as opposed to
well-established techniques. As already pointed out, the background 7 distribution in the Monte
Carlo data set used in this study differs appreciably from the corresponding distribution obtained
from the control sample, as shown by the two modes around n ~ —2 and n ~ 1 in the figure,
as opposed to the symmetric distribution centered around 7 =~ 0 that is obtained from the
high-statistics data set. As it can be seen, the sampler was able to identify with reasonable
performance the presence of such deviations with respect to the control sample templates. Such
properties of the background PDFs are specific to the data set under investigation, and could
not have been extracted using traditional supervised classification techniques, since those would
have relied on predefined background templates those features would have been absent from in
the first place.

In conclusion, although this study shows that traditional techniques can in some cases
outperform this algorithm in terms of classification performance as discussed in the following,
the primary objective of the proposed approach is not to improve on existing methods in terms of
classification performance, but rather to extract information about statistical fluctuations from
a data set of interest.

In addition to obtaining data-driven estimates of the subpopulation PDFs in unconstrained
mode, one of the goals of the algorithm in this application is to assign individual particles a
probability for them to originate from a given process, such as a hard scattering of interest as
opposed to background. In this study, the latter probabilities were obtained from the same
unconstrained run of the algorithm that provided the PDF estimates shown in figure 7. In
general, other choices are possible, such as performing an additional run of the algorithm in
constrained mode with subpopulation PDFs kept fixed at the estimates shown in figure 7, as
previously mentioned. Detailed studies will be necessary in order to understand the implications
of different choices before population-based tools for background discrimination can be applied
to physics analysis at the LHC.

An initial comparison of the classification performance of the algorithm in the configuration
chosen for this study with the corresponding performance of existing techniques is described in
section 3.3.

The probabilities returned by the algorithm were validated by comparing the true kinematic
distributions with the corresponding ones for particles with Py;y > 0.5, Py;y being the estimated
probability for a given particle to originate from the signal process, averaged over the last 100
iterations. Results are shown in figure 8, where histogram bars indicate the n distribution for
particles with Pg;y > 0.5 and stars correspond to true distributions.
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Figure 7. Subpopulation PDFs estimated by the unconstrained sampler on the Monte Carlo
input data set used in this study, averaged over the last 100 iterations. (a) Background 7. (b)
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PDFs estimated by the algorithm and the corresponding truth-level information.

Table 1. Average numbers of pile-up particles (second
column) expected at different LHC instantaneous -
luminosities (first column) [17]. A 25 ns bunch  L{cm™s™")  (npy) Npg/Nsig

crossing is assumed. The third column reports 1033 23 0.1
the corresponding ratios between the number of 1034 23.0 0.9
background and signal particles observed in the 103° 230.0 4.4

kinematic region considered in this study. These
estimates were used to generate the curves shown in
figure 10, as described in the text.
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3.8. Classification performance

Operating the sampler as presented in this article is equivalent to using it as a binary classifier.
Its performance can thus be quantified using the Receiver Operating Characteristic (ROC) curve,
which displays true-positive as a function of false-positive probability. The area under the curve
is a number between 0 and 1: the higher its value, the better the classifier is able to discriminate



between the two categories (signal and background in this case). The ROC curve of a random
classifier would be a straight line along the main diagonal on the true-positive vs false-positive
plane (“chance diagonal" [15]).

Figure 9 shows a comparison between the ROC curve obtained using the unconstrained
sampler on the Monte Carlo input data set used for this study and the corresponding curves
from different supervised multivariate classification methods using TMVA [16] V04-01-00. The
curves are displayed using an equivalent representation in terms of background rejection rate as
a function of signal efficiency! . The dashed lines refer to different TMVA methods?, namely
Boosted Decision Trees (dashed blue), Naive Bayes classification (dashed black), the Neural
Network-based classifier MLPBNN (dashed green), and Linear Discriminant (dashed red).

The solid red line corresponds to the proposed algorithm. The figure suggests that
classification performance of the sampler is similar to that of existing supervised methods,
although other methods perform better in terms of ROC curve on the data set used in this
study. However, the advantage of the proposed sampling algorithm with respect to existing
methods is not in terms of improved classification performance, but instead relates to estimating
features of the background distributions that reflect statistical fluctuations in the data, which is
generally not possible using established supervised classifiers trained on control samples.

It may also be useful to provide a more precise idea of the background rejections and
signal efficiencies that can be achieved using the proposed algorithm corresponding to different
LHC instantaneous luminosities®. Figure 10 shows estimates of background contamination as
a function of signal efficiency at three different LHC instantaneous luminosities. Background
contamination is defined as the number of misclassified background particles normalized to the
number of signal particles, and is calculated by rescaling the abscissa of the ROC curve by the
ratio between the number of background and signal particles in the kinematic region considered
in this study, as given in table 1. The abscissa of the ROC curve in fact corresponds to false-
positive rate, i.e. to the probability for a background particle to be misclassified as signal, and
multiplying it by the ratio between the number of background and signal particles provides
the desired result. The three curves in figure 10 correspond to instantaneous luminosities of
1033 em 257! (solid black), 103 cm=2s7! (dashed blue), and 1035 cm~2s7! (dotted green).

3.4. Convergence issues
A remark is necessary with regards to the convergence properties of the Markov Chain associated
with the proposed sampling algorithm in the form presented in this article. The proposed
technique is here justified primarily based on the results it provides, and based on its ability
to extract additional information related to statistical fluctuations from a data set of interest.
This is to be compared with the description of background distributions obtained using control
samples, which, despite its level of precision, usually only reflects average background conditions
and does not take statistical fluctuations into account.

Although the statistical model (1) may be questioned from a theoretical point of view and a
more rigorous approach based on Bayesian nonparametric methods may be required, the model
presented here in practice leads to a well-defined target distribution for the algorithm to sample

! Based on our previous terminology, “background rejection rate" is equivalent to 1 — Pyry—sig, and “signal
efficiency” corresponds t0 Psig—sig, Where Porg—sig (Psig—sig) 18 the probability for a background (signal) particle
to be mapped to the signal subpopulation.

2 The algorithms were run using the high-statistics control sample for training and the same collection of particles
the sampler was run on for testing.

3 The expected average number of pile-up interactions, i.e. the expected average number of primary vertices in
the events, is here taken as a measure of background activity for illustrative purposes.

4 The average numbers of pile-up interactions at different LHC instantaneous luminosities are taken from [17],
and correspond to a 25 ns bunch crossing.



from. As anticipated, this is primarily due to the constraints associated with the histogram
regularization procedure adopted in this study, which effectively restricts the search space and
leads to the existence of a well-defined stationary distribution for the Markov Chain. This was
also verified explicitly by using flat distributions as initial conditions for the subpopulation PDFs,
making sure that reasonable estimates of the PDFs were still obtained by the sampler.

3.5. Dependence on initial conditionus

One more issue that is worth discussing is dependence of results on initial conditions. The
ability to reach the equilibrium distribution regardless of the starting point is a defining feature
of Markov Chains. Throughout this study, it has been verified that the initial conditions on
the subpopulation PDFs can be perturbed without altering the final resuls. Results are actually
independent of the PDF initial conditions well beyond the deviations that are normally expected
given the high level of precision with which initial PDF estimates are generally obtained from
control samples.

The similarity of the PDFs estimated by the sampler with the PDF initial conditions obtained
from the control sample should not be mistaken for a limitation of the proposed method, but
should rather be seen as a defining feature. Although incorporating a more rigorous formulation
of the statistical model will be important for the method to be developed further, it should
be noticed that one of the goals of the algorithm is to improve on knowledge of background
PDFs obtained from high-statistics control samples by extracting additional information about
statistical fluctuations from a data set under study. For this reason, the PDFs estimated by
the sampler will normally be similar to the initial PDFs, and the associated Markov Chain will
generally exhibit a relatively-fast convergence by construction.

3.6. Concluding remarks

The possibility to estimate features of signal and background distributions from a data set under
study is a distinctive characteristic of the proposed method as compared to existing multivariate
approaches such as those available in ROOT [18] with TMVA. Although established techniques
in some cases provide better classification performance on the data set analyzed in this study, as
shown by the comparison in figure 9, existing methods are in general unable to describe features
of the background distributions that are not already encoded in the training sample. And since
the latter typically corresponds to a high-statistics control sample, this usually leads to statistical
fluctuations in the input data set being neglected.

This technique has been investigated with the prospective goal of developing novel methods
for intensive offline analysis of individual interesting events at the LHC, and more generally
in particle physics. Data analysis in the field in fact often results in a number of candidate
events that may contain a signal process of interest. Traditional methods perform background
subtraction based on fixed templates that typically provide a precise description of average
background properties. However, this approach normally leads to neglecting features of
background distributions due to statistical fluctuations that may be present in the candidate
events of interest even though those features cannot be spotted from background templates
obtained from control samples. Developing dedicated tools for background subtraction based on
event-level templates taking fluctuations into account may then lead to improved background
subtraction and to lower systematic uncertainties. This aspect will be the subject of future
studies, as will quantification of the impact of the algorithm in a realistic analysis environment.

It is also worth noticing that, from a conceptual point of view, the proposed population-based
approach is in a sense based on a similar phylosophy as particle flow analysis, which has been
increasingly used in particle physics [19], in that the focus is on individual particles inside events.
However, the prospective objective of the proposed technique is different, and concentrates on



extracting from the data event-level background templates that take statistical fluctuations into
account.

Efforts to eliminate noise in event-by-event analysis of high-energy multiparticle production
are reported in the literature, most notably with reference to the study of dynamical fluctuations
in heavy-ion collisions, where the notion of “event-by-event fluctuations" was introduced [20],
e.g. for mean transverse momentum or mean transverse energy measurement. In the context of
such studies, the focus is e.g. on analytically obtaining moments that can be used to eliminate
statistical fluctuations from the data with a view to extracting information about the underlying
dynamics [21]. Although those studies are conceptually related to the prospective goal of the
approach presented in this article in that they aim to subtract noise from individual events,
they are fundamentally different. First of all, [21] requires fluctuations to be Poissonian, while
this method works under more general conditions. Moreover, one of the novel aspects of this
work is the idea of concentrating on individual particles inside events, reformulating background
discrimination in terms of a classification problem at the particle level. In other words, the
emphasis of this work on a new population-based view of particle physics events is an important
aspect that distinguishes the proposed approach from previous efforts.

As a concluding remark, it should also be noted that the iterative nature of the algorithm
leads to a disadvantage with respect to established multivariate algorithms in terms of execution
time. However, the running time of the sampler corresponding to 1,000 iterations on the Monte
Carlo input data set used in this study was ~ 20 s on a 2 GHz Intel Processor with 1 GB
RAM, so still reasonable for offline use. In any case, given the parallelization potential of the
sampler, which is a consequence of a similar property of the Gibbs sampler as pointed out in [2],
improvements may be possible in this respect, for example using commodity Graphics Processing
Units (GPUs) that have been used extensively both in particle physics and in other disciplines
for compute-intensive applications.

4. Conclusions and outlook

This contribution has presented an initial investigation of a novel approach to background
discrimination in particle physics that builds on a population-based view of events from high-
energy particle collisions. Collections of particles are treated as mixtures of subpopulations
associated with different physics processes, and sampling techniques related to statistical mixture
decomposition models are used to assign individual particles a probability for them to originate
from a hard scattering of interest as opposed to background. This application of the proposed
sampling algorithm to a classification problem at the particle level has been pursued with the
prospective goal of developing a suite of tools for extraction of background properties from
individual interesting events at the LHC, and more generally in particle physics. For instance, a
major objective is to obtain estimates of PDF shapes from the data without relying exclusively
on templates from high-statistics control samples and without assuming predefined functional
forms.

This study has highlighted strengths and limitations of the algorithm operated in different
configurations. In general, systematic uncertainties associated with the use of the algorithm will
have to be evaluated in the context of a given analysis.

Detailed understanding of how classification performance in different configurations compares
to existing techniques will also require further study, as will the possible development
of subsequent versions optimized in terms of execution time, building on the inherent
parallelizability of the algorithm.

As anticipated, the total number of particles in the Monte Carlo input data set used in this
study is in line with typical charged particle multiplicities at the LHC corresponding to operating
conditions as of July 2011. For this reason, the results presented in this article are a promising
starting point for futher development, with a view to building dedicated software tools for offline



analysis of individual interesting events at the LHC.
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Appendix: Toy Monte Carlo studies

Results from the Monte Carlo study described in section 3 were cross-checked on toy Monte
Carlo data sets. Samples of ~ 600 signal and background particles were generated according to
n and pr distributions similar to those obtained using Pythia. Particle n and pr were generated
independently: Gaussian PDFs centered at zero with standard deviations comparable to those
observed in Monte Carlo were used for 1, and pr values were generated based on polynomial
PDFs in the range 2 GeV/c < pr < 5 GeV/c parametrizing the corresponding Monte Carlo
distributions.

Additional cross-checks were performed by varying toy Monte Carlo generation parameters
by +10% with respect to their nominal values, in order to make sure that results did not depend
on a specific parameter choice. The algorithm was also run on different numbers of particles in
the input data set, with no appreciable changes to the results.
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