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.ukAbstra
t. Ba
kground properties in experimental parti
le physi
s are typi
ally estimatedfrom 
ontrol samples 
orresponding to large numbers of events. This 
an provide pre
iseknowledge of average ba
kground distributions, but typi
ally does not take into a

ountstatisti
al �u
tuations in a data set of interest. A novel approa
h based on mixture modelde
omposition is presented, as a way to extra
t additional information about statisti
al�u
tuations from a given data set with a view to improving on knowledge of ba
kgrounddistributions obtained from 
ontrol samples. Events are treated as heterogeneous populations
omprising parti
les originating from di�erent pro
esses, and individual parti
les are mappedto a pro
ess of interest on a probabilisti
 basis. The proposed approa
h makes it possibleto estimate features of the ba
kground distributions from the data, and to extra
t informationabout statisti
al �u
tuations that would otherwise be lost using traditional supervised 
lassi�erstrained on high-statisti
s 
ontrol samples. A feasibility study on Monte Carlo is presented,together with a 
omparison with existing te
hniques. Finally, the prospe
ts for the developmentof tools for intensive o�ine analysis of individual interesting events at the Large Hadron Colliderare dis
ussed.1. Introdu
tionBa
kground dis
rimination in parti
le physi
s is usually performed by identi�ng events thatare more likely to 
ontain a physi
s pro
ess of interest, the primary goal being reje
tion of
ontributions from uninteresting pro
esses that mimi
 the signal and thus make its extra
tionand measurement more 
ompli
ated. Traditional approa
hes a
hieve this goal by fo
ussing onentire events, 
omparing kinemati
 and topologi
al properties with referen
e distributions usuallyobtained from 
ontrol samples.This arti
le presents a novel approa
h that builds on a population-based view of parti
lephysi
s events, whi
h are treated as mixtures of subpopulations 
omprising parti
les originatingfrom di�erent physi
s pro
esses su
h as a hard s
attering of interest as opposed to ba
kground.The main goal is to de
ompose an input data set by assigning individual parti
les a probabilityfor them to originate from a given pro
ess based on parti
le-level information.This is a
hieved by adapting and applying mixture de
omposition te
hniques [1℄ that arewell established in statisti
s and that have been used in other dis
iplines to solve formally-similar problems. In this formulation, events are treated as heterogeneous statisti
al populations
omprising parti
les whose kinemati
s re�e
ts the pro
ess they originated from.



This 
ontribution des
ribes an initial investigation of the possibility to use mixture modelde
omposition te
hniques for ba
kground dis
rimination at the Large Hadron Collider (LHC).The study is based on a sampling algorithm inspired by the Gibbs sampler [2℄ and by Expe
tationMaximization (EM) [3℄ whose goal is to de
ompose an input data set into 
olle
tions of parti
lesoriginating from a hard s
attering of interest as opposed to ba
kground, mapping individualparti
les to signal or ba
kground on a probabilisti
 basis. A number of well-established methodsand results set a 
ontext for this investigation in addition to the Gibbs sampler and to EM, namely(i) other simulation-based methods su
h as [4℄, (ii) a more general use of Markov Chain MonteCarlo (MCMC) te
hniques, re
ently applied to the study of the Cosmi
 Mi
rowave Ba
kgroundradiation [5℄, (iii) a re
ent renewed interest in Bayesian numeri
al methods for data analysisin parti
le physi
s [6℄ [7℄ [8℄, in addition to (iv) the use of MCMC with referen
e to spe
i�
optimization problems in the �eld [9℄.In this study, the proposed sampling algorithm was used to 
lassify individual parti
les intosignal and ba
kground. Results obtained on a 
olle
tion of ∼ 600 simulated parti
les from ahard s
attering and from ba
kground are presented and dis
ussed in this arti
le, together with
ross-
he
ks on toy Monte Carlo as des
ribed in the appendix.In general, di�erent events in parti
le physi
s 
an look very di�erent from one another evenwhen the underlying physi
s pro
esses are the same, and statisti
al �u
tuations 
an be non-negligible in low-statisti
s data sets. When 
lassi�
ation is performed using traditional supervisedalgorithms, �u
tuations are usually not taken into a

ount, sin
e training typi
ally relies onhigh-statisti
s 
ontrol samples. On the other hand, the algorithm presented in this arti
le 
anestimate properties of signal and ba
kground probability density fun
tions (PDFs) from thedata: in prin
iple, this makes it possible to use information obtained from a data set of interestto improve on the des
ription of ba
kground PDFs obtained from 
ontrol samples, whi
h do notnormally take statisti
al �u
tuations into a

ount.From a broader perspe
tive, this 
ontribution illustrates a new population-based approa
hthat aims to improve on the des
ription of ba
kground PDFs obtained from a high-statisti
s
ontrol sample by using information about statisti
al �u
tuations extra
ted from a lower-statisti
s data set: this is done by assigning individual parti
les a probability for them to originatefrom signal or ba
kground, i.e. by de
omposing an input 
olle
tion of parti
les into signal andba
kground-asso
iated subpopulations.2. The sampling algorithmThis approa
h to ba
kground dis
rimination is presented with referen
e to the general problemof de
omposing a 
olle
tion of parti
les from high-energy parti
le 
ollisions into subpopulationsasso
iated with di�erent underlying physi
s pro
esses and des
ribed in terms of di�erent PDFs.The input data set 
onsists of a mixture of parti
les, some of whi
h originated from a hards
attering of interest, others from ba
kground. Provided that the 
orresponding subpopulations
an be 
hara
terized su�
iently well in terms of their kinemati
 or topologi
al properties, it is inprin
iple possible to ask, for ea
h parti
le, what the probability is for it to originate from signalas opposed to ba
kground. In parti
ular, the proposed algorithm estimates su
h probabilities byiteratively sampling from subpopulation PDFs.As opposed to 
lassi
al mixture models, whi
h typi
ally rely on a parametri
 formulationrequiring the shapes of the subpopulation PDFs to be known a priori, our formulation is basedon a more general mixture of the form
K∑

j=1

αjfj(x) (1)where the PDFs fj satisfy a set of 
onstraints asso
iated with a histogram regularization



pro
edure as outlined in se
tion 3. Subpopulation fra
tions αj (�mixture weights") are requiredto sum to unity, i.e. ∑K
j=1 αj = 1.The variable x 
an 
orrespond to parti
le pseudorapidity η, a kinemati
 variable related tothe parti
le polar angle θ in the laboratory frame in terms of η = −ln(tanθ/2), or pT i.e. thetransverse momentum of the parti
le with respe
t to the beam dire
tion. The subpopulationPDFs fj are de�ned in terms of regularized histograms of x, as des
ribed in se
tion 3, where theasso
iated 
onstraints imposed on the PDFs are detailed. The symbol ϕj will be used to denotethe estimate of the generi
 subpopulation PDF fj throughout the text.The 
hoi
e of (1) was driven by our previous studies, where assuming a prede�ned PDFfun
tional form led to signi�
ant bias on mixture weight estimates. That bias ultimately relatedto assuming that PDFs obtained from high-statisti
s 
ontrol samples were also appropriate todes
ribe the 
orresponding probability distributions in a lower-statisti
s data set. However,statisti
al �u
tuations are sometimes appre
iable, and for this reason it is ne
essary for themodel to provide more �exibility if �u
tuations in the data set of interest are to be des
ribed.While a rigorous treatment may 
all for the use of nonparametri
 Bayesian methods [10℄, whi
h
an be used to provide an additional dimension of �exibility to statisti
al models, it was de
idedto adopt a simpli�ed intuition-driven approa
h for this study, in order to avoid introdu
ingadditional 
ompli
ations not related to the algorithm itself in this phase of the development.The histogram regularization pro
edure des
ribed in se
tion 3 
an be seen as a simpli�edversion of established methods su
h as Tikhonov regularization [11℄, whi
h 
an be used to imposesmoothness 
onstraints to a likelihood maximization problem. From a 
on
eptual point of view,an alternative way of interpreting the model used in this study is as a simpli�ed version ofestablished kernel or wavelet-based te
hniques, where regularized histograms e�e
tively play therole of a set of basis fun
tions. In the absen
e of any 
onstraints to the PDFs in the mixture,the statisti
al model (1) would instead not be well de�ned, so this is an essential ingredient.Additional remarks about existen
e and uniqueness of a stationary distribution for the MarkovChain asso
iated with the algorithm in the 
on�guration used for this study will be provided inse
tion 3 after the dis
ussion of the Monte Carlo analysis.Given the mixture of probability distributions (1) and a set of observations {xi}i=1,...,N , theproblem of 
lustering the latter into K groups by probabilisti
ally asso
iating ea
h of themwith a distribution of origin has been solved numeri
ally in a Bayesian framework using MCMCte
hniques. In parti
ular, the Gibbs sampler [1℄, whi
h dire
tly inspired this work, has been usedfor this purpose in di�erent dis
iplines.The basi
 pseudo
ode of the proposed sampling algorithm is reported below. The value ofvariable v at iteration t is indi
ated with v(t) throughout.(i) Initialization: Choose α(0) = {α(0)

j }j and f
(0)
j =ϕ

(0)
j , j = 1, ...,K as des
ribed in se
tion 3.(ii) Iteration t:(a) Generate the allo
ation variables z

(t)
ij , i = 1, ..., N , j = 1, ...,K based on probabilities

P (z
(t)
ij = 1|α(t−1)

j , ϕ
(t−1)
j , xi) proportional to α

(t−1)
j f(xi|ϕ(t−1)

j ). The quantity z
(t)
ij equals1 when observation i is mapped to distribution j at iteration t, and 0 otherwise. Ingeneral, the variables z

(t)
ij depend both on the mixture weights αj and on the estimates

ϕj of the subpopulation PDFs from the previous iteration.(b) Generate α(t) from the probability density fun
tion of α given z(t−1) = {z(t−1)
ij }ij ,

ρ(α|z(t−1)). Knowledge of whi
h parti
les are mapped to pro
ess j at iteration t − 1makes it possible to generate the subpopulation fra
tions α at iteration t.(
) Obtain an updated estimate of the subpopulation PDFs from the data x based onknowledge of whi
h parti
les are mapped to subpopulation j at iteration t− 1. Detailsare provided in se
tion 3.



A spe
i�
 
hoi
e for the fun
tion ρ and a way to obtain updated estimates of the subpopulationPDFs fj are des
ribed in se
tion 3 with referen
e to the Monte Carlo study.The 
entral idea of the algorithm is the following: the better the observations {xi}i aremapped to the subpopulations j = 1, ...,K, the more a

urate the estimates of ρ(α|z) and ofthe subpopulation PDFs ϕj . On
e some 
orre
t values of zij are found, ρ(α|z) and ϕj begin toroughly re�e
t the 
orre
t distributions, whi
h in turn leads to additional 
orre
t mappings zijto be found at subsequent iterations.The above pseudo
ode 
orresponds exa
tly to the Gibbs sampler, where updated estimates ofsubpopulation PDFs are obtained at ea
h iteration, as indi
ated at step (
). On the other hand,when step (
) is removed from the pseudo
ode, parti
les are mapped to signal and ba
kgroundbased on the subpopulation PDFs provided at initialization, and the algorithm is then moreakin to EM. Throughout the paper we will refer to the two versions of the algorithm with step(
) in
luded or not in the pseudo
ode as �un
onstrained sampler" and �
onstrained sampler",respe
tively.The primary obje
tive of this arti
le is to study the use of the proposed sampling te
hniquein di�erent 
on�gurations in order to:(i) Obtain estimates ϕj of the subpopulation PDFs from the input data set.(ii) Estimate the subpopulation weights αj. In the 
ontext of this study, this 
orresponds toestimating the fra
tions of ba
kground and signal parti
les 
ontained in the input data set.(iii) Assign individual parti
les a probability for them to originate from a given pro
ess basedon the subpopulation PDFs estimated at step (i) as opposed to relying ex
lusively on high-statisti
s templates. In the 
ontext of this study, this allows 
lassi�
ation of individualparti
les into signal and ba
kground.3. Monte Carlo studyThe algorithm was applied to a Monte Carlo data set generated using Pythia 8.140 [12℄ [13℄,obtained superimposing gg → tt̄ signal events from pp intera
tions at √s = 14 TeV to soft QCDintera
tions, so 
alled Minimum Bias events, in order to simulate ba
kground. The signal pro
esswas 
hosen in order to illustrate the use of the algorithm for ba
kground dis
rimination at theparti
le level. Further studies will be needed in order to extend these results beyond the initialinvestigation presented in this arti
le, and to assess the potential of population-based te
hniquesfor ba
kground dis
rimination in the 
ontext of spe
i�
 analyses at the LHC.The sampler was run over a 
olle
tion of 
harged parti
les with 2 GeV/
 < pT < 5 GeV/
,and individual parti
les were assigned a probability for them to originate from signal as opposedto ba
kground based on their η and pT values.The pseudo
ode of the algorithm used for this appli
ation is shown below. Subs
ripts sig and
bkg relate to signal and ba
kground, respe
tively.(i) Initialization: Set αbkg = α

(0)
bkg = 0.5, fj = ϕ

(0)
j . Initial 
onditions for the estimates ϕ

(0)
jof the subpopulation PDFs f

(0)
j are given by regularized η and pT distributions from thehigh-statisti
s 
ontrol sample, as des
ribed in se
tion 3.1.(ii) Iteration t:(a) Generate z

(t)
ij for all parti
les (i = 1, ..., N) and distributions (j = 1, 2 
orrespondingto ba
kground and signal, respe
tively) a

ording to P (z

(t)
ij = 1|α(t−1)

j , ϕ
(t−1)
j , xi) ∝

α
(t−1)
j fj(xi|ϕ(t−1)

j ), where α1 = αbkg, α2 = 1 − αbkg.(b) Set α
(t)
j =

∑
i z

(t−1)
ij /N , ∀j. This 
orresponds to the simplest 
hoi
e of setting

ρ(αj |z(t−1)) = δ(αj −
∑

i z
(t−1)
ij /N) for the probability density fun
tion of α given z.
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(b)Figure 1. (a) Generator-level η and pT distributions for signal (solid green histograms) andba
kground parti
les (dashed red histograms) with 2 GeV/
 < pT < 5 GeV/
 from the high-statisti
s 
ontrol sample. The distributions 
orrespond to a total number of ∼ 33, 000 parti
lesand are normalized to unit area. (b) The 
orresponding two-dimensional distribution.(
) Obtain updated estimates of the subpopulation PDFs by regularizing the η and pTdistributions 
orresponding to parti
les mapped to the relevant subpopulation atiteration t − 1, i.e. based on z
(t−1)
ij .In general, the fun
tions fj are the joint PDFs for η and pT 
orresponding to ba
kground(j = 1) and signal (j = 2) parti
les. This study is restri
ted to 
harged parti
les with

2 GeV/
 < pT < 5 GeV/
, whi
h makes it possible to negle
t the 
orrelation between η and pTas a �rst approximation. For this reason, the joint PDFs take the form fsig/bkg = f
(η)
sig/bkgf

(pT )
sig/bkg,and obtaining updated estimates of the subpopulation PDFs redu
es to regularization of one-dimensional histograms, as des
ribed in the following.As for the number of iterations to be used with the algorithm, no rule is do
umented in thestatisti
s literature with referen
e to related te
hniques, and the 
hoi
e is generally problem-dependent. The number of iterations was set to 1,000 in this study, and probabilities wereaveraged over the last 100 iterations. Runs were also performed letting the sampler run fora longer time: the algorithm exhibited a relatively fast 
onvergen
e on the data set analyzed,and no gain was found in 
hoosing a higher number of iterations. Moreover, multiple runs wereperformed under di�erent initial 
onditions in order to make sure that the algorithm 
onverged.In parti
ular, the initial 
onditions for the subpopulation PDFs were perturbed by using di�erentinitial 
onditions for the �ts to the high-statisti
s distributions from the 
ontrol sample. Similarly,the generation parameters in the toy Monte Carlo study were varied around their nominal valuesby ±10%, with no appre
iable di�eren
e in the results.In order to obtain initial 
onditions ϕ

(0)
j for the subpopulation PDFs, a Monte Carlo dataset was used 
ontaining a total of about 33,000 
harged parti
les in the kinemati
 range

2 GeV/
 < pT < 5 GeV/
. In addition to estimation of ϕ
(0)
j , this high-statisti
s 
ontrol sample



was also used to guide the histogram regularization pro
edure as des
ribed in the following.Figure 1 (a) shows the η and pT distributions for signal and ba
kground parti
les (solid greenand dashed red histograms, respe
tively).As anti
ipated, one of the goals of the sampler is to estimate the ba
kground PDFs from theinput 
olle
tion of parti
les. In other words, the algorithm 
lassi�es parti
les into signal andba
kground without relying ex
lusively on prede�ned ba
kground templates: the ba
kgroundPDFs that are estimated by the algorithm are thus expe
ted to re�e
t the spe
i�
 ba
kground
onditions in the input data set, whi
h 
an be di�erent from the average 
onditions obtainedfrom a high-statisti
s 
ontrol sample.The algorithm basi
ally tries to un
over a signal and a ba
kground subpopulation in the input
olle
tion of parti
les based on the data and on initial 
onditions on the subpopulation PDFs.The results presented in this arti
le relate to an input data set 
omprising 636 
harged parti
lesin the kinemati
 region 2 GeV/
 < pT < 5 GeV/
, out of whi
h 481 originate from a signalhard pro
ess and 155 from ba
kground, 
orresponding to a fra
tion of ba
kground parti
les of
∼ 24%. The total number of parti
les in the input data set is in line with typi
al 
harged parti
lemultipli
ities at the LHC as of July 2011.The signal and ba
kground η and pT distributions 
orresponding to the Monte Carlo inputdata set used in this study are shown in �gure 2. The solid green (dashed red) histograms inthe upper panel display the signal (ba
kground) η distributions, normalized to unit area. The
orresponding pT distributions are given in the lower panel. It is worth noti
ing that someof these distributions are appre
iably di�erent from the 
orresponding ones obtained from the
ontrol sample due to statisti
al �u
tuations, as expe
ted. In parti
ular, the ba
kground ηdistribution exhibits two modes that are shifted with respe
t to zero, while the 
orrespondingdistribution from the 
ontrol sample is 
entered around zero.In order to illustrate the histogram regularization pro
edure used in this study, �gure 3 showsan example of the η distribution of parti
les mapped to the signal subpopulation at a giveniteration of the algorithm. As opposed to assuming a fun
tional form for the PDF and �tting afun
tion to the histogram, the histogram is regularized i.e. the subpopulation PDF is obtainedby means of spline interpolation of the histogram 
ontents, as further dis
ussed in the following.The superimposed 
urve on the �gure 
orresponds to the regularized histogram, and is used bythe algorithm as an estimate of the 
orresponding subpopulation PDF.As anti
ipated, this approa
h gives the algorithm more �exibility in terms of estimating thesubpopulation PDFs from the input data set with respe
t to our previous attempts relying on aprede�ned PDF fun
tional form, while still leading to a well-de�ned target distribution for theasso
iated Markov Chain.3.1. RegularizationStep (
) in the pseudo
ode shown in se
tion 3 requires iterative PDF updates based on 
urrentmapping of individual parti
les to di�erent subpopulations. This operation is performed whenthe algorithm is operated in un
onstrained mode, as dis
ussed below.As anti
ipated, it was de
ided to adopt a simpli�ed statisti
al model for the purpose ofthis investigation, while at the same time providing enough �exibility for the algorithm to beable to des
ribe �u
tuations. In the 
ontext of this study, this was done by performing splineinterpolation of one-dimensional η and pT histograms. As previously mentioned, this 
an be seenas a simpli�ed version of established regularization te
hniques, for instan
e as a way to use apriori information about the underlying distributions in order to get rid of spurious os
illatory
omponents (su
h methods have been analyzed in detail in parti
le physi
s in order to developunfolding pro
edures, with a view to �removing" dete
tor e�e
ts from observed distributions, seee.g. [14℄).The 
omplexity of the histogram regularization pro
edure that was used in this study was
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Figure 2. Parti
le η and pT distributionsfrom the Monte Carlo input data set usedin this study. Solid green and dashedred histograms 
orrespond to signal andba
kground, respe
tively. Distributions arenormalized to unit area.
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bkg ηFigure 3. Example of the pseu-dorapidity η distribution of parti-
les mapped to the ba
kground sub-population at a given iteration ofthe algorithm. The superimposed
urve is the result of the regular-ization pro
edure des
ribed in thetext, and is used by the algorithmas an estimate of the 
orrespondingsubpopulation PDF.intentionally kept minimal in order to avoid the introdu
tion of additional 
ompli
ations thatmight obs
ure the response of the algorithm at this stage of the development. Further studieswill be needed in order to understand in detail how results are a�e
ted by the regularizationpro
edure.In the 
ontext of this investigation, a priori information about signal and ba
kgroundPDFs was obtained from the high-statisti
s 
ontrol sample. When subpopulation PDFs areupdated iteratively during the exe
ution of the sampler, i.e. when the algorithm is operatedin un
onstrained mode, a �regularization window" is applied to the η histograms in order toget rid of outliers: in other words, a spline interpolation of the histogram 
ontents is obtainedusing only the part of the histogram that lies between a minimum and a maximum η value,whi
h leads to extreme statisti
al �u
tuations on the tails of the distribution to be ex
luded. Itis worth noti
ing that assuming a fun
tional form for the PDF and �tting it to the histogramwould e�e
tively produ
e a similar result, i.e. it would redu
e the impa
t of outliers on theestimated PDF. However, as anti
ipated, that approa
h was observed to introdu
e signi�
antbias in previous studies, and was thus abandoned in favor of the statisti
al model presented in(1), where subpopulation PDFs are de�ned as the output of a histogram regularization pro
edurewithout referen
e to any prede�ned fun
tional form, but still subje
t to regularization 
onstraints.Figure 4 shows signal (solid green) and ba
kground (dashed red) η distributions from the high-statisti
s 
ontrol sample, with superimposed arrows indi
ating the regularization window. Themaximum |η| value was set to |η| = 5 (|η| = 7) for signal (ba
kground).On top of this, again with a view to getting rid of extreme statisti
al �u
tuationswhen regularizing histograms, boundary 
onditions were introdu
ed on the η and pT PDFs,
onstraining the value of fj to points 
hosen based on 
ontrol sample distributions: in parti
ular,the signal (ba
kground) η PDF was 
onstrained to 0 when |η| > 5 (|η| > 7), and signal(ba
kground) pT PDFs were 
onstrained at 2 GeV/
 and 5 GeV/
 to 0.7 (1.2) and 0.1 (0)



η
-10 -8 -6 -4 -2 0 2 4 6 8 100

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22
0.24

sig

bkg

Figure 4. Illustration of the regular-ization window used in this study. Thehistograms 
orrespond to signal (solidgreen) and ba
kground (dashed red)
η distributions from the high-statisti
s
ontrol sample. The position of the solidgreen and dashed red arrows 
orrespondto the regularization window: at ea
h it-eration of the algorithm, only the partof the distribution that lies between thearrows is used for spline interpolation,whi
h makes the results robust againstoutliers. Additional details are given inthe text.(see �gure 1(a)).Results were found to be stable with respe
t to reasonable 
hanges to the above regularization
ontraints.3.2. Choi
e of 
on�gurationAs anti
ipated, the algorithm 
an be operated in un
onstrained or 
onstrained mode, dependingon whether step (
) in the pseudo
ode given in se
tion 3 is in
luded or not.As already pointed out in se
tion 2, the algorithm 
an pro
ess an input 
olle
tion of parti
lesin order to obtain one or more of the following results:(i) Estimate the subpopulation PDFs from the input data set.(ii) Estimate the fra
tion of parti
les asso
iated with a given pro
ess in the input data set, e.g.the fra
tion of ba
kground parti
les.(iii) Assign individual parti
les a probability for them to originate from a given pro
ess, su
has a hard s
attering of interest as opposed to ba
kground, based on subpopulation PDFsestimated at step (i) as opposed to relying on prede�ned templates that re�e
t averageba
kground 
onditions.Depending on the obje
tive, it may be appropriate to run the algorithm in di�erent modes.For instan
e, the histogram regularization pro
edure that is used here to obtain iterativeestimates of the subpopulation PDFs when the algorithm is operated in un
onstrained modeinherently leads to bias on mixture weights, be
ause imposing a regularization window 
hangesthe number of parti
les that are mapped to signal or ba
kground at a given iteration. For thisreason, it may be more appropriate to use a di�erent approa
h in order to estimate the fra
tionof ba
kground parti
les.One option is des
ribed below:(a) The 
onstrained sampler is �rst used to estimate the mixture weights. In the two-subpopulation s
enario des
ribed in this study, goal (ii) above 
orresponds to estimatingthe fra
tion of ba
kground parti
les 
ontained in the input data set. The initial 
onditionsfor the mixture weights are α

(0)
1 = α

(0)
2 = 0.5, 
orresponding to no prior knowledge aboutthe fra
tion of ba
kground parti
les in the input sample. The subpopulation PDFs are kept�xed at the estimates provided by the high-statisti
s 
ontrol sample. The 
orrespondingresults are des
ribed in se
tion 3.2.1.
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Figure 5. Mixture weights obtainedrunning the 
onstrained sampler on theMonte Carlo input data set. Resultsfrom the last 100 iterations are shown.The solid green (dashed red) 
urvedenotes the estimated fra
tion of signal(ba
kground) parti
les. The solid green(dashed red) horizontal line indi
ates thetrue value for signal (ba
kground) fromthe simulation, and the dash-dot line
orresponds to the initial 
onditions forthe mixture weights.
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Figure 6. Mixture weights obtainedrunning the 
onstrained sampler on a toyMonte Carlo data set, as des
ribed in thetext. Results from the last 100 iterationsare shown. The solid green (dashedred) 
urve 
orresponds to the estimatedfra
tion of signal (ba
kground) parti
les.The solid green (dashed red) horizontalline indi
ates the true value for signal(ba
kground) from the toy Monte Carlo,and the dash-dot line 
orresponds to theinitial 
onditions for the mixture weights.(b) The algorithm is then run again on the input data set in un
onstrained mode, i.e.subpopulation PDFs are now updated at ea
h iteration, starting from initial 
onditions
orresponding to regularized distributions from the high-statisti
s 
ontrol sample. However,mixture weights are kept �xed at the results from the previous step.It is worth noti
ing that the algorithm di�ers from a proper Gibbs sampler in both 
ases.As for assigning individual parti
les in the input data set a probability for them to originatefrom signal as opposed to ba
kground, the most appropriate approa
h may again depend on thespe
i�
 appli
ation. In general, probabilities may be assigned dire
tly using the un
onstrainedsampler at step (b) above, as done in this study, or an additional run of the algorithm in
onstrained mode may alternatively be added after the previous two, with �xed PDFs given bythe estimates from step (b). Further studies will be ne
essary in order to better understand the
lassi�
ation performan
e of the algorithm in di�erent 
on�gurations and to guide this 
hoi
e.Results obtained running the 
onstrained an un
onstrained sampler as des
ribed above onthe Monte Carlo input data set used in this study are reported and dis
ussed in the followingse
tions.3.2.1. Constrained sampler As anti
ipated, the algorithm in 
onstrained mode was primarilyused in this study in order to estimate mixture weights, i.e. the fra
tion of ba
kground parti
lesin the input data set. Figure 5 shows the 
orresponding estimates over the last 100 iterations.The solid green and dashed red 
urves 
orrespond to the estimated fra
tions of signal andba
kground parti
les, respe
tively. The solid green (dashed red) horizontal line indi
ates thesignal (ba
kground) true value from the simulation, while the dash-dot line 
orresponds to theinitial 
onditions for the mixture weights.



Additional runs on toy Monte Carlo samples were performed as a 
ross-
he
k, as des
ribed inthe appendix. In parti
ular, �gure 6 displays the estimated mixture weights obtained by runningthe 
onstrained sampler on a toy Monte Carlo data set with subpopulation PDFs kept �xed attruth information.3.2.2. Un
onstrained sampler The un
onstrained sampler was used in this study in order toestimate the signal and ba
kground PDFs from the input data set, while keeping the mixtureweights �xed at the results obtained from the previous run of the algorithm in 
onstrained mode.Figure 7 shows the subpopulation PDFs estimated by the algorithm on the Monte Carloinput data set. The 
urves 
orrespond to the output of the histogram regularization pro
edureaveraged over the last 100 iterations, superimposed to the true distributions (histograms). The η(pT ) distributions are displayed in the top (bottom) plots, �gures on the left-hand (right-hand)side 
orreponding to ba
kground (signal). All distributions are normalized to unit area. Thebottom panel in ea
h �gure shows the 
orresponding ratio between the relevant subpopulationPDF estimated by the algorithm and truth information.The �gure illustrates a distin
tive 
hara
teristi
 of the proposed algorithm as opposed towell-established te
hniques. As already pointed out, the ba
kground η distribution in the MonteCarlo data set used in this study di�ers appre
iably from the 
orresponding distribution obtainedfrom the 
ontrol sample, as shown by the two modes around η ≃ −2 and η ≃ 1 in the �gure,as opposed to the symmetri
 distribution 
entered around η ≃ 0 that is obtained from thehigh-statisti
s data set. As it 
an be seen, the sampler was able to identify with reasonableperforman
e the presen
e of su
h deviations with respe
t to the 
ontrol sample templates. Su
hproperties of the ba
kground PDFs are spe
i�
 to the data set under investigation, and 
ouldnot have been extra
ted using traditional supervised 
lassi�
ation te
hniques, sin
e those wouldhave relied on prede�ned ba
kground templates those features would have been absent from inthe �rst pla
e.In 
on
lusion, although this study shows that traditional te
hniques 
an in some 
asesoutperform this algorithm in terms of 
lassi�
ation performan
e as dis
ussed in the following,the primary obje
tive of the proposed approa
h is not to improve on existing methods in terms of
lassi�
ation performan
e, but rather to extra
t information about statisti
al �u
tuations froma data set of interest.In addition to obtaining data-driven estimates of the subpopulation PDFs in un
onstrainedmode, one of the goals of the algorithm in this appli
ation is to assign individual parti
les aprobability for them to originate from a given pro
ess, su
h as a hard s
attering of interest asopposed to ba
kground. In this study, the latter probabilities were obtained from the sameun
onstrained run of the algorithm that provided the PDF estimates shown in �gure 7. Ingeneral, other 
hoi
es are possible, su
h as performing an additional run of the algorithm in
onstrained mode with subpopulation PDFs kept �xed at the estimates shown in �gure 7, aspreviously mentioned. Detailed studies will be ne
essary in order to understand the impli
ationsof di�erent 
hoi
es before population-based tools for ba
kground dis
rimination 
an be appliedto physi
s analysis at the LHC.An initial 
omparison of the 
lassi�
ation performan
e of the algorithm in the 
on�guration
hosen for this study with the 
orresponding performan
e of existing te
hniques is des
ribed inse
tion 3.3.The probabilities returned by the algorithm were validated by 
omparing the true kinemati
distributions with the 
orresponding ones for parti
les with Psig > 0.5, Psig being the estimatedprobability for a given parti
le to originate from the signal pro
ess, averaged over the last 100iterations. Results are shown in �gure 8, where histogram bars indi
ate the η distribution forparti
les with Psig > 0.5 and stars 
orrespond to true distributions.
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(d)Figure 7. Subpopulation PDFs estimated by the un
onstrained sampler on the Monte Carloinput data set used in this study, averaged over the last 100 iterations. (a) Ba
kground η. (b)Signal η. (
) Ba
kground pT . (d) Signal pT . In ea
h sub�gure, the upper panel shows truthinformation (histogram bars) superimposed to the result of the regularization pro
edure averagedover the last 100 iterations (
urve). The lower panels display the ratio between subpopulationPDFs estimated by the algorithm and the 
orresponding truth-level information.
Table 1. Average numbers of pile-up parti
les (se
ond
olumn) expe
ted at di�erent LHC instantaneousluminosities (�rst 
olumn) [17℄. A 25 ns bun
h
rossing is assumed. The third 
olumn reportsthe 
orresponding ratios between the number ofba
kground and signal parti
les observed in thekinemati
 region 
onsidered in this study. Theseestimates were used to generate the 
urves shown in�gure 10, as des
ribed in the text.

L(
m−2s−1) 〈nPU〉 Nbkg/Nsig

1033 2.3 0.1
1034 23.0 0.9
1035 230.0 4.4
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Figure 9. Comparison between the ROC
urve obtained using the un
onstrained sam-pler, shown here as ba
kground reje
tion rateas a fun
tion of signal e�
ien
y, and the
orresponding 
urves obtained using exist-ing supervised 
lassi�
ation te
hniques fromTMVA, as des
ribed in the text. The solidred line is the 
urve from the un
onstrainedsampler 
orresponding to the last 100 it-erations. The other 
urves 
orrespond toTMVA algorithms, namely Boosted De
isionTrees (dashed blue), Naive Bayes 
lassi�-
ation (dashed bla
k), the Neural Network-based 
lassi�er MLPBNN (dashed green), andLinear Dis
riminant (dashed red). Additionalinformation is given in the text.
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Figure 10. Ba
kground 
ontami-nation as a fun
tion of signal e�-
ien
y at di�erent LHC instantaneousluminosities (1033 
m−2s−1 solid bla
k,
1034 
m−2s−1 dashed blue, 1035 
m−2s−1dotted green). Ba
kground 
ontamina-tion is de�ned as number of mis
lassi-�ed ba
kground parti
les normalized tonumber of signal parti
les. Mis
lassi�
a-tion probabilities 
orrespond to the ROC
urve from the sampler in �gure 9. Ad-ditional information is given in the text.3.3. Classi�
ation performan
eOperating the sampler as presented in this arti
le is equivalent to using it as a binary 
lassi�er.Its performan
e 
an thus be quanti�ed using the Re
eiver Operating Chara
teristi
 (ROC) 
urve,whi
h displays true-positive as a fun
tion of false-positive probability. The area under the 
urveis a number between 0 and 1: the higher its value, the better the 
lassi�er is able to dis
riminate



between the two 
ategories (signal and ba
kground in this 
ase). The ROC 
urve of a random
lassi�er would be a straight line along the main diagonal on the true-positive vs false-positiveplane (�
han
e diagonal" [15℄).Figure 9 shows a 
omparison between the ROC 
urve obtained using the un
onstrainedsampler on the Monte Carlo input data set used for this study and the 
orresponding 
urvesfrom di�erent supervised multivariate 
lassi�
ation methods using TMVA [16℄ V04-01-00. The
urves are displayed using an equivalent representation in terms of ba
kground reje
tion rate asa fun
tion of signal e�
ien
y1 . The dashed lines refer to di�erent TMVA methods2, namelyBoosted De
ision Trees (dashed blue), Naive Bayes 
lassi�
ation (dashed bla
k), the NeuralNetwork-based 
lassi�er MLPBNN (dashed green), and Linear Dis
riminant (dashed red).The solid red line 
orresponds to the proposed algorithm. The �gure suggests that
lassi�
ation performan
e of the sampler is similar to that of existing supervised methods,although other methods perform better in terms of ROC 
urve on the data set used in thisstudy. However, the advantage of the proposed sampling algorithm with respe
t to existingmethods is not in terms of improved 
lassi�
ation performan
e, but instead relates to estimatingfeatures of the ba
kground distributions that re�e
t statisti
al �u
tuations in the data, whi
h isgenerally not possible using established supervised 
lassi�ers trained on 
ontrol samples.It may also be useful to provide a more pre
ise idea of the ba
kground reje
tions andsignal e�
ien
ies that 
an be a
hieved using the proposed algorithm 
orresponding to di�erentLHC instantaneous luminosities3. Figure 10 shows estimates of ba
kground 
ontamination asa fun
tion of signal e�
ien
y at three di�erent LHC instantaneous luminosities. Ba
kground
ontamination is de�ned as the number of mis
lassi�ed ba
kground parti
les normalized to thenumber of signal parti
les, and is 
al
ulated by res
aling the abs
issa of the ROC 
urve by theratio between the number of ba
kground and signal parti
les in the kinemati
 region 
onsideredin this study, as given in table 14. The abs
issa of the ROC 
urve in fa
t 
orresponds to false-positive rate, i.e. to the probability for a ba
kground parti
le to be mis
lassi�ed as signal, andmultiplying it by the ratio between the number of ba
kground and signal parti
les providesthe desired result. The three 
urves in �gure 10 
orrespond to instantaneous luminosities of
1033 
m−2s−1 (solid bla
k), 1034 
m−2s−1 (dashed blue), and 1035 
m−2s−1 (dotted green).3.4. Convergen
e issuesA remark is ne
essary with regards to the 
onvergen
e properties of the Markov Chain asso
iatedwith the proposed sampling algorithm in the form presented in this arti
le. The proposedte
hnique is here justi�ed primarily based on the results it provides, and based on its abilityto extra
t additional information related to statisti
al �u
tuations from a data set of interest.This is to be 
ompared with the des
ription of ba
kground distributions obtained using 
ontrolsamples, whi
h, despite its level of pre
ision, usually only re�e
ts average ba
kground 
onditionsand does not take statisti
al �u
tuations into a

ount.Although the statisti
al model (1) may be questioned from a theoreti
al point of view and amore rigorous approa
h based on Bayesian nonparametri
 methods may be required, the modelpresented here in pra
ti
e leads to a well-de�ned target distribution for the algorithm to sample
1 Based on our previous terminology, �ba
kground reje
tion rate" is equivalent to 1 − Pbkg→sig , and �signale�
ien
y" 
orresponds to Psig→sig , where Pbkg→sig (Psig→sig) is the probability for a ba
kground (signal) parti
leto be mapped to the signal subpopulation.
2 The algorithms were run using the high-statisti
s 
ontrol sample for training and the same 
olle
tion of parti
lesthe sampler was run on for testing.
3 The expe
ted average number of pile-up intera
tions, i.e. the expe
ted average number of primary verti
es inthe events, is here taken as a measure of ba
kground a
tivity for illustrative purposes.
4 The average numbers of pile-up intera
tions at di�erent LHC instantaneous luminosities are taken from [17℄,and 
orrespond to a 25 ns bun
h 
rossing.



from. As anti
ipated, this is primarily due to the 
onstraints asso
iated with the histogramregularization pro
edure adopted in this study, whi
h e�e
tively restri
ts the sear
h spa
e andleads to the existen
e of a well-de�ned stationary distribution for the Markov Chain. This wasalso veri�ed expli
itly by using �at distributions as initial 
onditions for the subpopulation PDFs,making sure that reasonable estimates of the PDFs were still obtained by the sampler.3.5. Dependen
e on initial 
onditionusOne more issue that is worth dis
ussing is dependen
e of results on initial 
onditions. Theability to rea
h the equilibrium distribution regardless of the starting point is a de�ning featureof Markov Chains. Throughout this study, it has been veri�ed that the initial 
onditions onthe subpopulation PDFs 
an be perturbed without altering the �nal resuls. Results are a
tuallyindependent of the PDF initial 
onditions well beyond the deviations that are normally expe
tedgiven the high level of pre
ision with whi
h initial PDF estimates are generally obtained from
ontrol samples.The similarity of the PDFs estimated by the sampler with the PDF initial 
onditions obtainedfrom the 
ontrol sample should not be mistaken for a limitation of the proposed method, butshould rather be seen as a de�ning feature. Although in
orporating a more rigorous formulationof the statisti
al model will be important for the method to be developed further, it shouldbe noti
ed that one of the goals of the algorithm is to improve on knowledge of ba
kgroundPDFs obtained from high-statisti
s 
ontrol samples by extra
ting additional information aboutstatisti
al �u
tuations from a data set under study. For this reason, the PDFs estimated bythe sampler will normally be similar to the initial PDFs, and the asso
iated Markov Chain willgenerally exhibit a relatively-fast 
onvergen
e by 
onstru
tion.3.6. Con
luding remarksThe possibility to estimate features of signal and ba
kground distributions from a data set understudy is a distin
tive 
hara
teristi
 of the proposed method as 
ompared to existing multivariateapproa
hes su
h as those available in ROOT [18℄ with TMVA. Although established te
hniquesin some 
ases provide better 
lassi�
ation performan
e on the data set analyzed in this study, asshown by the 
omparison in �gure 9, existing methods are in general unable to des
ribe featuresof the ba
kground distributions that are not already en
oded in the training sample. And sin
ethe latter typi
ally 
orresponds to a high-statisti
s 
ontrol sample, this usually leads to statisti
al�u
tuations in the input data set being negle
ted.This te
hnique has been investigated with the prospe
tive goal of developing novel methodsfor intensive o�ine analysis of individual interesting events at the LHC, and more generallyin parti
le physi
s. Data analysis in the �eld in fa
t often results in a number of 
andidateevents that may 
ontain a signal pro
ess of interest. Traditional methods perform ba
kgroundsubtra
tion based on �xed templates that typi
ally provide a pre
ise des
ription of averageba
kground properties. However, this approa
h normally leads to negle
ting features ofba
kground distributions due to statisti
al �u
tuations that may be present in the 
andidateevents of interest even though those features 
annot be spotted from ba
kground templatesobtained from 
ontrol samples. Developing dedi
ated tools for ba
kground subtra
tion based onevent-level templates taking �u
tuations into a

ount may then lead to improved ba
kgroundsubtra
tion and to lower systemati
 un
ertainties. This aspe
t will be the subje
t of futurestudies, as will quanti�
ation of the impa
t of the algorithm in a realisti
 analysis environment.It is also worth noti
ing that, from a 
on
eptual point of view, the proposed population-basedapproa
h is in a sense based on a similar phylosophy as parti
le �ow analysis, whi
h has beenin
reasingly used in parti
le physi
s [19℄, in that the fo
us is on individual parti
les inside events.However, the prospe
tive obje
tive of the proposed te
hnique is di�erent, and 
on
entrates on



extra
ting from the data event-level ba
kground templates that take statisti
al �u
tuations intoa

ount.E�orts to eliminate noise in event-by-event analysis of high-energy multiparti
le produ
tionare reported in the literature, most notably with referen
e to the study of dynami
al �u
tuationsin heavy-ion 
ollisions, where the notion of �event-by-event �u
tuations" was introdu
ed [20℄,e.g. for mean transverse momentum or mean transverse energy measurement. In the 
ontext ofsu
h studies, the fo
us is e.g. on analyti
ally obtaining moments that 
an be used to eliminatestatisti
al �u
tuations from the data with a view to extra
ting information about the underlyingdynami
s [21℄. Although those studies are 
on
eptually related to the prospe
tive goal of theapproa
h presented in this arti
le in that they aim to subtra
t noise from individual events,they are fundamentally di�erent. First of all, [21℄ requires �u
tuations to be Poissonian, whilethis method works under more general 
onditions. Moreover, one of the novel aspe
ts of thiswork is the idea of 
on
entrating on individual parti
les inside events, reformulating ba
kgrounddis
rimination in terms of a 
lassi�
ation problem at the parti
le level. In other words, theemphasis of this work on a new population-based view of parti
le physi
s events is an importantaspe
t that distinguishes the proposed approa
h from previous e�orts.As a 
on
luding remark, it should also be noted that the iterative nature of the algorithmleads to a disadvantage with respe
t to established multivariate algorithms in terms of exe
utiontime. However, the running time of the sampler 
orresponding to 1,000 iterations on the MonteCarlo input data set used in this study was ∼ 20 s on a 2 GHz Intel Pro
essor with 1 GBRAM, so still reasonable for o�ine use. In any 
ase, given the parallelization potential of thesampler, whi
h is a 
onsequen
e of a similar property of the Gibbs sampler as pointed out in [2℄,improvements may be possible in this respe
t, for example using 
ommodity Graphi
s Pro
essingUnits (GPUs) that have been used extensively both in parti
le physi
s and in other dis
iplinesfor 
ompute-intensive appli
ations.4. Con
lusions and outlookThis 
ontribution has presented an initial investigation of a novel approa
h to ba
kgrounddis
rimination in parti
le physi
s that builds on a population-based view of events from high-energy parti
le 
ollisions. Colle
tions of parti
les are treated as mixtures of subpopulationsasso
iated with di�erent physi
s pro
esses, and sampling te
hniques related to statisti
al mixturede
omposition models are used to assign individual parti
les a probability for them to originatefrom a hard s
attering of interest as opposed to ba
kground. This appli
ation of the proposedsampling algorithm to a 
lassi�
ation problem at the parti
le level has been pursued with theprospe
tive goal of developing a suite of tools for extra
tion of ba
kground properties fromindividual interesting events at the LHC, and more generally in parti
le physi
s. For instan
e, amajor obje
tive is to obtain estimates of PDF shapes from the data without relying ex
lusivelyon templates from high-statisti
s 
ontrol samples and without assuming prede�ned fun
tionalforms.This study has highlighted strengths and limitations of the algorithm operated in di�erent
on�gurations. In general, systemati
 un
ertainties asso
iated with the use of the algorithm willhave to be evaluated in the 
ontext of a given analysis.Detailed understanding of how 
lassi�
ation performan
e in di�erent 
on�gurations 
omparesto existing te
hniques will also require further study, as will the possible developmentof subsequent versions optimized in terms of exe
ution time, building on the inherentparallelizability of the algorithm.As anti
ipated, the total number of parti
les in the Monte Carlo input data set used in thisstudy is in line with typi
al 
harged parti
le multipli
ities at the LHC 
orresponding to operating
onditions as of July 2011. For this reason, the results presented in this arti
le are a promisingstarting point for futher development, with a view to building dedi
ated software tools for o�ine



analysis of individual interesting events at the LHC.A
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ussions.Appendix: Toy Monte Carlo studiesResults from the Monte Carlo study des
ribed in se
tion 3 were 
ross-
he
ked on toy MonteCarlo data sets. Samples of ∼ 600 signal and ba
kground parti
les were generated a

ording to
η and pT distributions similar to those obtained using Pythia. Parti
le η and pT were generatedindependently: Gaussian PDFs 
entered at zero with standard deviations 
omparable to thoseobserved in Monte Carlo were used for η, and pT values were generated based on polynomialPDFs in the range 2 GeV/
 < pT < 5 GeV/
 parametrizing the 
orresponding Monte Carlodistributions.Additional 
ross-
he
ks were performed by varying toy Monte Carlo generation parametersby ±10% with respe
t to their nominal values, in order to make sure that results did not dependon a spe
i�
 parameter 
hoi
e. The algorithm was also run on di�erent numbers of parti
les inthe input data set, with no appre
iable 
hanges to the results.
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