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Abstract. When monitoring complex experiments, comparison is often made between
regularly acquired histograms of data and reference histograms which represent the ideal state
of the equipment. With the larger HEP experiments now ramping up, there is a need for
automation of this task since the volume of comparisons could overwhelm human operators.
However, the two-dimensional histogram comparison tools available in ROOT have been noted
in the past to exhibit shortcomings. We discuss a newer comparison test for two-dimensional
histograms, based on the Energy Test of Aslan and Zech, which provides more conclusive
discrimination between histograms of data coming from different distributions than methods
provided in a recent ROOT release.

1. Introduction

A traditional task when monitoring HEP experiments has been the comparison between regularly
acquired histograms of data, representing some aspect of the machine performance, and reference
histograms which reflect the baseline or ideal state of the equipment. Histograms are typically
used rather than the raw data points because of the compactness they provide, both in data
storage space and in visual presentation. When a discrepancy is seen, it is flagged and the
problem passed to an appropriate expert to decide what action is to be taken. With the advent
of larger experiments, such as at the LHC, there is the potential for automated comparisons to
ease the load on control-room shift-workers faced with a wide array of such histograms.

These types of comparison are called goodness-of-fit (GoF) tests, and can be subdivided into
two broad types: the one-sample GoF test considers whether a given data sample is consistent
with being generated from some specified distribution, while the two-sample GoF test examines
the hypothesis that two data samples are derived from the same parent distribution. In general,
similar methods can be applied to both types of tests. However, the problems are ill-posed
– only the null hypothesis (that the distributions are the same) is well defined, the alternative
hypothesis (that the distributions do not match) is not fully specified. It is important, therefore,
to determine the most appropriate GoF method for any given problem.

Methods for comparing one-dimensional data distributions are well known, one of the more
widespread being the Kolmogorov-Smirnov (KS) test [1] which compares cumulative distribution
functions (CDF) for the two sets of data and takes as a statistic the maximum difference between
them. Although this test is intended to be applied to discrete data, it is feasible to apply it
to histogrammed data as well, provided that the effects of the binning on the test are taken
into account. Applying this test in more than one dimension is problematic since it relies on an



ordering of the data to obtain the CDFs, but there are 2d-1 distinct ways of defining an ordering
in a d-dimensional space [2]. Multidimensional GoF tests are also ill-posed in that they lack
metric invariance. That is, the choice of scale factor or, in the case of histogrammed data, the
number of bins can greatly affect the comparison result.

1.1. Histogram comparisons in ROOT

The widely-used data-handling and analysis package ROOT [3] provides two methods for
comparing histograms, Chi2Test (χ2) and KolmogorovTest (a KS test). Details of these tests
may be found elsewhere [3, 4, 5] but in brief the χ2 test compares histograms on a bin-by-
bin basis while the KS test compares neighbourhoods, using the CDFs as described above.
Extension of the χ2 test to two dimensions (2D) is relatively straightforward, but the 2D-KS
test is complicated by the ordering problem. ROOT addresses this by computing two CDFs for
each histogram, accumulating the binned data rasterwise, in column- and row-major patterns,
so that the comparison yields two maximum differences and the Kolmogorov function is applied
to their average to return the probability P of the null hypothesis (i.e., that the two histograms
represent selections from the same distribution). However, as 2D histograms are more finely
binned, the order in which the binned data are accumulated approaches the order of the discrete
data in the most-slowly varying dimension [5]. Consequently the CDFs generated by the ROOT
2D-KS test approach those of the discrete data ordered in one dimension along each coordinate
separately. In extreme cases this can lead to false positives as histograms with similar projections
onto the axes are compared (figure 1).

1.2. An alternative 2D test

Another method for comparing distributions in more than one dimension is the Energy Test
presented in recent years by Aslan and Zech [6, 7, 8]. While this is again originally designed
for discrete data, the authors postulated that speed gains may be obtained by applying it to
histogrammed or clustered data sets [6]. We have previously shown a version of the Energy
Test for histogrammed data within the ROOT framework, and provided some evaluations of
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Figure 1. A ROOT 2D-KS comparison of two 2 000-point histograms binned at 500× 500.
The test returns a high probability (P=99.83%) that the both sets of data come from the
same distribution. This is because they each have the same projections onto the axes.



its performance [5]. Some shortcomings in the ROOT implementation of the 2D-χ2 Test were
found, which have since been improved, and we revisit here some comparisons with the latest
version of ROOT, in order to introduce the method to a wider audience.

2. The Energy Test

Consider two samples of data points in a d-dimensional domain, A of n points x1,x2,x3,. . . ,xn

and B of m points y1,y2,y3,. . . ,ym, whose compatibility with the hypothesis that they arise
from the same distribution is to be tested. If A is considered a system of positive charges, each
1/n, and B a system of negative charges, each -1/m (i.e., each system is normalised to unity
charge), then from electrostatics in the limit of n → ∞, m → ∞ the total potential energy of the
combined samples, computed for a 1/r potential, will be a minimum when both charge samples
have the same distribution. This concept is generalised in the Energy Test.

2.1. The test statistic

The test statistic Φnm for the Energy Test consists of three terms, corresponding to the self-
energies (from the repulsive forces between like charges) of the samples A and B (ΦA and ΦB,
respectively) and the interaction energy (from the attraction between opposite charges) between
the samples (ΦAB) – a simple example is shown in figure 2:

Φnm = ΦA + ΦB + ΦAB (1)
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where R is a continuous, monotonically-decreasing function of the Euclidean distance r between
the charges. Usually R(r) = − ln(r + ǫ) is chosen rather than the electrostatic potential 1/r
because it renders the test scale-invarant (although this is strictly true only if the same scale
is applied in all dimensions) and offers a good rejection power against many alternatives to the
null hypothesis. The value of the cutoff parameter ǫ, used to avoid singularities, is not critical
so long as it is of the order of the mean distance between points at the densest region of the
sample distributions.

It has been shown [7] that the test statistic is positive and has a minimum when the two
samples are from the same distribution, in the limit of n → ∞, m → ∞, while another
argument [6, 8] shows that when the samples have the same number of points, Φnm has a
minimum when the points are pairwise coincident.
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Figure 2. A simple example of the terms
involved in the Energy Test. In this two-
dimensional case the distributions A and
B each have two points. The red arrow
illustrates the (repulsive) self-energy between
the positive particles in A, and the blue arrow
shows that of the negative particles in B. The
green arrows illustrate the (attractive) inter-
action energy between the oppositely-charged
particles.



2.2. Implementing the Energy Test for 2D histograms

The test was implemented as a compiled ROOT macro, for equally-binned (N ×N) histograms
in the first instance. Aslan and Zech [7] suggest that the ranges of the data can be normalised, to
equalise the relative scales of the x- and y-coordinates. A similar normalisation is realised here
by taking the histogram limits to be zero and unity (i.e., the distance between adjacent rows or
columns is set to 1/N). Underflow and overflow bins (with indices 0 and N+1, respectively, in
ROOT notation) are included with nominal widths of 1/N below or above the histogram limits;
arguments to the routine determine whether or not they are included in the comparison.

There is a slight complication from the fact that histograms do not preserve positional
information about the points within a given bin so they must all be assigned a single position,
for example the bin centre. This means that the case where r = 0 must be treated specially
– i.e., when bin (i,j) is being compared to bin (i,j), either when computing ΦAB (different
histograms) or when calculating ΦA and ΦB (same histogram; unlike the discrete case, the self-
energy between points in the same bin must be taken into account). We assume the original
points are randomly distributed within the (square) bin limits and take the average distance
between pairs of random points in a unit square to calculate an effective cutoff ǫ.

This value is <r>= 1

15
(2 +

√
2 + 5 sinh−1 1) = 0.521 405 433. . . [9] so we use ǫ = <r> /N as

the distance. For an N ×M histogram one would use instead the expression for the average
distance between uniform random points in a 1/N × 1/M rectangle [10],
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where a= 1/N , b =1/M and ρ =
√

a2 + b2. Distances for other bin combinations are calculated
simply as the Euclidean distance between bin centres, justified by the proximity of this value to
the average distance between random points in the two bins from Monte Carlo simulations.

A minor modification to the calculation of the self-energy of the k points within a given bin is
to weight by k2/2 rather than the rigorous k(k−1)/2, as this ensures that comparisons between
identical histograms return exactly zero analytically. An added benefit is that any scaling factors
applied across individual histograms will be cancelled out rather than producing an offset that is
dependent on the total histogram content [5]. If desired the rigorous behaviour can be obtained
by the use of a parameter flag.

To summarise, the implementation of the three terms in the energy sum when comparing two
N × N ROOT histograms A and B with total contents n and m, respectively, is given by
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where D0 = − ln(<r>/N), R(i, j, k, l) = D0 when (i=k, j=l) or −1

2
ln(((i− k)2 + (j − l)2)/N2)

otherwise, D(j, l) = R(i, j, i, l) = − ln(|j − l|/N), and A(i, j), B(i, j) are the contents of
individual bins within the histograms.

2.3. Speed

The calculation, and thus the time complexity, of the test statistic Φnm is, by inspection, O(n2)
so that in terms of histogram dimensions the cost is O(N4). Table 1 shows the times taken for



Table 1. Times taken to compare 106-point histograms of various
binnings with the ROOT 2D-KS and 2D-χ2 tests and the Energy Test.

Size ROOT 2D-KS ROOT 2D-χ2 Energy Test

25 × 25 <10 ms <10 ms <10 ms
50 × 50 <10 ms <10 ms 10 ms

100 × 100 <10 ms <10 ms 160 ms
250 × 250 <10 ms 10 ms 6.1 s
500 × 500 30 ms 30 ms 96.3 s

comparison of several pairs of histograms, filled with 106 points in a random uniform distribution
and as a constant bin content, respectively. Despite all efforts to reduce calculations as much
as possible, the increase in CPU time for the Energy Test beyond a binning of about 100× 100
is evident. As with all the results reported in this work, the calculations were performed on
a 2.67 GHz Xeon X5550 computer using ROOT Version 5.30/00. Outlier bins were always
excluded from the comparisons.

3. Performance

3.1. Testing the power

The power of a comparison test is its ability to discriminate against non-conforming data, i.e.,
the fraction of non-compatible data which is rejected based on a selection criterion. In order to
determine the power, the confidence level for accepting a test result must first be established.
A common criterion is the 95th percentile CL95 – the value of a test beyond which only 5% of
valid comparisons will lie.

Two references were developed for several tests; a constant distribution (i.e., no statistical
fluctuation) of 10 points in each bin of a 100× 100 histogram across the unit square, and a
continually re-generated sample of 100 000 points randomly and uniformly distributed across the
square. 50 000 tests were performed against these references using further samples of 100 000
random points. These are thus, respectively, references for one-sample GoF tests, to determine
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Figure 3. The distribution of results of the histogrammed energy test, comparing 50 000
sets of 100 000 randomly distributed points on the unit square to a constant distribution
and to a second uniform distribution at 100× 100 binning.



if samples are consistent with arising from a constant distribution, and two-sample GoF tests
to test if samples come from the same parent distribution as the random distribution.

The resulting test statistic distributions are shown in figure 3. Aslan and Zech [8, 11]
found that their test distribution is well described by a generalised extreme value (GEV)
distribution [12] but were unable to calculate the parameters of the distribution from first
principles so they recommended determining the distribution by Monte Carlo methods. We
also have found that GEV distributions fit well to data such as in figure 3 [5] but have used the
experimental distributions rather than fits to determine percentile values. These give values for
CL95 of 3×10−5 for a constant parent and 6×10−5 for comparisons against a uniform random
distribution, as shown in the figure.

3.1.1. The Cook-Johnson distribution The power of the histogrammed energy test to determine
deviations from the constant and random distributions was tested using various levels of the
Cook-Johnson distribution, one of the tests used by Aslan and Zech for their discrete energy
test [7]. The Cook-Johnson distribution is the multivariate uniform distribution given by

(X1, . . . , Xd) = ((1 +
E1

S
)−a, . . . , (1 +

Ed

S
)−a) (4)

where E1, . . . , Ed are independent and identically distributed exponential random variables, S
is an independent gamma(a) random variable and a > 0 is a parameter [13]. For a → ∞ this
approaches a uniform distribution within the d-dimensional hypercube; as a → 0 the distribution
becomes correlated, X1 = . . . = Xd (see figure 4 for examples in two dimensions).

The power of the energy test and the ROOT 2D-KS and 2D-χ2 tests for comparing the various
Cook-Johnson distributions on the unit square against the constant reference and uniform
distributions are given in table 2. The selection criteria are the 95% confidence levels established
in section 3.1 for the energy test, and a 5% acceptance level for the probability P returned by
the ROOT 2D-KS and 2D-χ2 tests. From the table it is evident that the histogrammed energy
test has a much higher power than the ROOT 2D tests, rejecting Cook-Johnson distributions up
to a= 50, whereas the ROOT tests only reject distributions with much lower values of a. Both
of the ROOT tests perform rather better at rejecting the hypothesis that the Cook-Johnson

Table 2. The discrimination power of the histogrammed energy test and the ROOT
2D tests comparing 2D Cook-Johnson distributions to a constant reference distribution
and a uniform distribution.

Constant reference Uniform reference
Cook-Johnson Energy Test 2D-KS 2D-χ2 Energy Test 2D-KS 2D-χ2

parameter a power power power power power power

200 0.092 0.0 0.0 0.076 0.012 0.035
100 0.19 0.0 0.0 0.114 0.012 0.051
50 0.806 0.0 0.0 0.412 0.013 0.05
20 1.0 0.0 0.0 1.0 0.023 0.172
10 1.0 0.0 0.0 1.0 0.018 0.87
5 1.0 0.0 0.0 1.0 0.01 1.0
2 1.0 0.379 1.0 1.0 0.491 1.0
1 1.0 1.0 1.0 1.0 1.0 1.0

0.6 1.0 1.0 1.0 1.0 1.0 1.0
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Figure 4. The two-dimensional Cook-Johnson distribution, for parameter a=200, 100, 50,
20, 10, 5, 2, 1 and 0.6, plotted as 100× 100 histograms on the unit square. Each histogram
contains 107 points (i.e., an average of 1 000 points per bin). Note the change in the z range
of the distribution as a becomes smaller.

distributions are from a randomly distributed population than in rejecting them as from a
constant distribution.

3.1.2. Gaussian contamination As a test of sensitivity to contamination, similar comparisons
were made between the constant and uniform reference distributions and 1 000 samples of
a uniform distribution where n% (n = 0,1,. . . ,8) of the 100 000 points in each sample were
replaced by points from a bivariate N(0,1) (Gaussian) distribution (see figure 5). The 100× 100
histograms’ limits were [-3,3] in each dimension with the bivariate distribution truncated at these
limits; because of the normalisation in the energy test, the same CL95 values as in section 3.1
are expected for 100 000-point uniform distributions. Acceptance criteria for the ROOT tests
were the same as in section 3.1.1.



Table 3 gives the discrimination power of the three tests. As expected, the observed power of
the energy test for 0% contamination is consistent with the choices of CL95, which strongly reject
distributions with 2% contamination or higher. However, the ROOT 2D-KS test only shows high
discrimination power at 3% contamination and above for both hypotheses, while the ROOT 2D-
χ2 test does not reject any distributions in the case of a constant reference but performs slightly
better at considering the contaminated samples not to match a uniform distribution.

Table 3. The discrimination power of the histogrammed energy test and the ROOT
2D-KS and 2D-χ2 tests for comparisons of increasing levels of a bivariate N(0,1)
distribution contamination in a uniform distribution in -3<x, y<3 against a constant
and a uniformly distributed reference.

Constant reference Uniform reference
Gaussian Energy Test 2D-KS 2D-χ2 Energy Test 2D-KS 2D-χ2

contamination power power power power power power

0% 0.044 0.0 0.0 0.045 0.005 0.048
1% 0.731 0.003 0.0 0.351 0.083 0.054
2% 1.0 0.194 0.0 0.982 0.560 0.075
3% 1.0 0.964 0.0 1.0 0.983 0.114
4% 1.0 1.0 0.0 1.0 1.0 0.238
5% 1.0 1.0 0.0 1.0 1.0 0.454
6% 1.0 1.0 0.0 1.0 1.0 0.690
7% 1.0 1.0 0.0 1.0 1.0 0.917
8% 1.0 1.0 0.0 1.0 1.0 0.983

3.1.3. Displacement sensitivity The sensitivity of the tests to a shift in the position of a
histogrammed sample was investigated by comparing 1 000 pairs of 100 000-point bivariate N(0,1)
distributions, in 100× 100 histograms with a range of [-3,3] in each dimension, while the second
distribution was moved away from (0,0) in x-increments of 0.01 (1/6th of a bin width). All
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distributions were truncated at the histogram limits.
For the histogrammed energy test CL95 was taken from the test metric distribution obtained

from 50 000 pair-wise comparisons at δx=0 which yielded a value of 5.26×10−5 (figure 5);
acceptance criteria for the ROOT 2D-KS and 2D-χ2 tests were again P >5%.

The calculated powers for the tests are given in table 4. The histogrammed energy test
provides slightly better rejection than the ROOT 2D-KS test, approaching full rejection at
δx=0.02 (1/3rd of a bin width) compared to 0.03 for the 2D-KS test. The ROOT 2D-χ2 test,
however, does not provide high rejection until the separation approaches two bin-widths (0.12).

Table 4. The discrimination power of the histogrammed energy test and the ROOT
2D-KS and 2D-χ2 tests for comparisons of increasing displacement δx between bivariate
N(0,1) distributions in 100× 100 histograms covering -3<x, y<3 .

Energy Test 2D-KS 2D-χ2 Energy Test 2D-KS 2D-χ2

δx power power power δx power power power

0 0.045 0.009 0.026 0.07 1.0 1.0 0.490
0.01 0.380 0.135 0.021 0.08 1.0 1.0 0.713
0.02 0.965 0.723 0.036 0.09 1.0 1.0 0.884
0.03 1.0 0.990 0.057 0.10 1.0 1.0 0.958
0.04 1.0 1.0 0.100 0.11 1.0 1.0 0.992
0.05 1.0 1.0 0.169 0.12 1.0 1.0 1.0
0.06 1.0 1.0 0.305

4. Conclusions

We have presented our investigations into a new test for performing goodness-of-fit comparisons
between two-dimensional histograms, based upon the Energy Test of Aslan and Zech.

Compared with the two existing ROOT tests for 2D histograms, the histogrammed energy
test proves far superior to the ROOT Chi2Test and outperformed the ROOT KolmogorovTest

in our comparisons of synthetic data sets.
The main reason for this ranking in performance seems to be that the histogrammed energy

test is a global test, with comparisons between every pair of bins in the histograms entering into
the result, while the ROOT 2D-KS is a regional test more influenced by neighborhood variations
as the CDFs are built up. The ROOT χ2 test for its part is strictly a localised test with each
bin in the histogram only being compared to its counterpart.

The disadvantage of the histogrammed energy test is that it takes longer to perform, especially
at the highest binnings, but for moderately-sized histograms the penalty is slight, particularly
when the time taken to construct the histograms is also considered.
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