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B Purpose

@ To handle arbitrary combination of mass parameters in d-dimensional 1-loop
calculations ( massive and massless cases ).

@ Tensor integral in Feynman parameter representation.
< differentiation in terms of mass parameters.

@ To obtain numerically stable expressions.
B Hypergeometric functions will be useful.

@ Regge (1969, a class of generalized Hypergeometric equations)

@ Tarasov et al., Davydychev, Kalmykov, ... (1-, 2-loop, ...)

@ Duplanti¢ and Nizi¢, Kurihara (1-loop, for massless QCD with IR)
B This work:

@ New analytic expression for general box integration using extended
hypergeometric functions.
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Attention!

@ Results depends of the order of limiting process.

(p2)€—1_>{—1/e (e>0, p?>—0)

€ logp?> (p®> #0, €— +0)

=> different expressions among massive and massless cases around 4-dim.

@ We take limits in the following order:

1. Differentiation in terms of m; for tensor integration.

2. If particles are massless (and on-shell), take the limit m; — 0 (and
p: — 0) before d — 4.

3. d — 4, or expansion in terms of (d — 4), before the numerical
calculation.

@ Poles of € may be produced by an integration.
= not always possible to expand the integrand.
@ Numerical instability: oo — co — finite, 0/0 — finite.

Analytic properties of the expressions are important not only for physical
behavior but also for numerical stabilities.
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2-point function

@ 2-point scalar integration for general parameters.

1
{ = / dx D,
0
D= —p?x(l —x)+miz+mi(l —x) —ic
Scalar integration: a = +0 in 4-dim.

@ Factorize with the roots © = y4 of D = 0:

1 «@ a
() _ a/( Z‘) ( .T)
L =D(0 1-— 1-— dx.
2 (0) o At -

@ It is a special case of Appell Fi:

Fl(a757ﬁ/;’y;yaz)

—L 1130‘71 — )N (1 —ya) P (1= 22) " da
- Frea [ e )P = )
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B Appell I

@ Power series expansion, differential equation and integral representation is
known.

@ Generalization of Gauss Hypergeometric function F:
Fi(e, 8,073y, 2) = Fla, ;73 9)-

9 Regular except for (depending on the values of parameters)
y=0,1,00, 2=0,1,00, y=2.

= important information for numerical stability.

Appell F;
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Around 4-dim.

@ For massive case (with identity of F})

I = _DOPF(, —a;a+2; ;LJF)

+ 27 payera P Sl
a+1 o "1 -t

@ Expansion around 4-dim. with

F(ae,be; 1+ be; 2) = 1 + abe? Lig(2) + O(€%),

l—e [14+2 (A—-2)2 11—z, 3
_ _ — L @) .
1— 2 2z 2z ¢ z 12 (Z) + (6 )

F(1,6,2 —¢;2)

@ usual expression in 4-dim with log and Lis.
@ numerically calculable

@ Other identities and expansion formulas are used for massless case.
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3-point function

@ 3-point function
1— 1
™ = / da / dzy D

where, D is a quadratic form of 27 and zs.

@ Linearization of D for one variable (elimination of 23 term):

Change variables (z1,x2) — (x2,y): (projective transformation;
"tHooft-Veltman '79)

Ty =Y —Tx2, Y= +TT2

r : root of a quadratic equation.
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3-point function: 1st integration

@ D is linear in x9 = trivial integration for zs.

o Da+1
-y e
edge; a;y + bz

i:edge of the triangle

@ D : quadratic in terms of y = product of linear factors of y.

N 1 y a+1 y a+1
I = | —— 1 — = 1-= dy.
8 ;C /aiy+bi ( %+> ( Vi Y

One more factor in the integrand than F}.
= Lauricella’s Fp.
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Lauricella Fp

@ Integral representation

FD(aaﬂh"' 7/87“ Vs Tyt ,l'n) =

PO ey e TT (4 - )
F(oz)F('y—a)/Ot (1-1) };[1(1 i) Pt

@ A generalization of F' (when n = 1), F} (when n = 2).
@ Analyticity: Regular except for z; = 0,1,00, ; =z} (j # k).
9 l|dentity: for constants zq, ..., x,

- T _g a2
P71 2 1H(1—$iz) Bi :£;FD (p, (B:), 1 —q;p+ 15 (3:2), 2) .

i=1

= primitive function of any product of linear factors with arbitrary powers.
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3-point function with F)p

@ The result is

°‘+1 1 1 1

2
>R e
a+1\/ﬁ —~ TR0 W

I:ga) —

where,

D : discriminant appearing in the projective transformation.
k: indicates an edge of the triangular integration domain.
Dy value of D on the edge k.

Zko: —b/a on the edge k.

'y,f: roots of Dy.

¢ & ¢ ¢ ¢

@ Around 4 dim.: Fp = F; = log, Lis.
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4-point function

@ 4-point function:
) = / d'zo(1-3 ;) D,
R

D is a homogeneous quadratic form of ;.

4

>0
For scalar integration, & = —2 — ¢ (e < 0).

@ st integration : <= Projective transformation : same as 3-point functions:

1 Da+1
Dy = .
/ YT a+19,D

D is quadratic in terms of other variables, while 9, D is a linear factor.
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Second integration

@ Projective transformation once more
= Integrate with the formula (special case for F)p):
2P~1 d

— ~ SBF(1.8: 1
1_ 2 de F( u676+ 7'2)7

= The second integration is expressed with F' (Gauss HGF).

@ Integration domain : slightly complicated

= differential form = Stokes' theorem.
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The result of the second integration

@ After integrations twice:

3 4
IAEOC) = Z Z sz

i=1 m=1,m#1
1
im 1 j i m
et (dy, D\ dimD
det? ( €im ) Fllat2at+3, im ) dz,

where

@ d;n: independent of x, brought from projective transformations.
9 €;m,: quadratic form of x.
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Separation of the leading pole

@ For o+ 2 = —e — +0 (for the scalar integration),

a+2

F(1 2,a+3;2)=1
(?a+ 7a+ Z) +a+3

zF(l,a+3,a+4;2).

@ For Jig (x1 =22=0, 23=y, 24 =1 —y)

1 1Doc+2
Jig=— d
12 <a+1><a+2>/o e
1 1 6?;_1 (d12D>a+3 d12D
- F(l,a+3,a+4, dy.
<a+1>(a+3)/o a2\ er (Lat3atd, = 00)dy

@ The first term = leading pole = expressed by Fp.
When €15 x D = 1/€2.
The second term

Argument of F': rational expression (quadratic)/(quadratic).
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Partial integration

@ Primitive function of e'{‘jl = partial integration.
@ Product of linear terms with roots of ej2(y) = 0:
e12(y) = €12y —y+)(y —y-)

@ Primitive function.

dh
ez(y)* ™! = d;y),
hy) = - 22 —ye)* T (- —y)*
o+ 2
xF(—a—l,a—l—Q;a—i—?);%).
+ - —_

Argument of F' : linear for y.
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Result of partial integration

@ Result of partial integration

Ji2 = Jiap + Ji2s + Jior

1 L pa+2
Jiop = — d
12D (@t D(at2) /0 P

1 duD>“+3
Jiag 1= — h F(1,a+3,a+4,
128 (a+1)(a+3)d?2+2{ (y)( €12 (Lo +3,0

1 ! D\ >
Jiog == — h — P(y) dy,
121 ot 1/0 (v) <612> (y) dy

P(y) := d—log (612;512D> ( sum of 1/(linear)).

@ Ji2p : leading pole term = F)p.
@ Jiog : surface term = F x F.

@ Jyos : to be integrated.
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Last integration

@ Divide integration domain into [0,y_] and [y_, 1] and re-scale them to [0, 1].
@ Use integral representation of F.

@ The result is (w, z:new variable, ug:const.)

e [ [ ()

x P(y_w)z*t (1 — ugz)* ™

+ (one more similar term).

@ 2 dim. integration.
o Integrand is a product of powers of linear factors.
@ Integration domain is a simplex.

= Aomoto-Gelfand hypergeometric function.
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Aomoto-Gelfand HGF

Integral representation:

F((as), (Bj),vi @)
_ I'(v) = yoi-1 - LY S a1
CT(y- Yoy i) [T T(as) / n Zl_[l ( Z Z)

=1

m—n—1

J
H <1 — meul) d"u.
j=1 i=1
@ Integrand : product of power of linear term.
@ Integration domain : n-dimensional simplex A™.
@ Variable z : m X (m —n — 1) matrix;

Indices v : m x (m —n — 1) integer matrix;

a : n-dim. vector; 8 : (m —n — 1)-dim. vector.

@ See: K. Aomoto and M. Kita, “Theory of Hypergeometric Functions”,
Springer, 2011.
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4-point function: summary

)

General 4-point function is expressed by Aomoto-Gelfand hypergeometric
functions and Fp for both massive and massless cases.

Up to O(€°) (d = 4 — 2¢ for d-dimensional space-time), 4-point funct. is
expressed by Fp.

With further expansion in terms of ¢, the expression is written with log and
Lis.
Coefficients of 1/€? and 1/e terms should cancel for massive case.

= usable for check.
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Numerical library

@ It is hard to construct general numerical package to calculate F' and Fp.

(e.g. F includes Li, for all n)
< We need values only for some special combination of parameters.

@ Sample numerical calculation for 4 point functions:

@ All particles are massless.

At least one external particle is on-shell (p? = 0).

They have IR divergences (poles of ¢).

Calculate up to O(€?).

Tensor integrations up to rank = 4 with analytic expressions.

¢ & ¢ ¢

@ Library written in fortran90 (under development)

@ Entry points of subroutines : Fp or F' with parameters a + be.
© Subroutines return : arrays of coefficients (a,,) in
Fp=a_s/€® +a_1/e+ap+--- up to necessary order.
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Comparison

@ 7560 points in physical and unphysical region, including tensor integrations
(rank = 0, ..., 4).

@ Compared with golem95.

@ The maximum relative errors (measured by the distance on the complex
plane) on these points in comparison with golem95

maximum error
program-1(d)  program-2(d) 7.65 x 10~7
program-1(d)  golem95(d)  9.13 x 10~1°
program-1(d) program-1(q) 3.98 x 1071°
golem95(d) golem95(q)  5.17 x 10710
program-1(q)  golem95(q)  1.38 x 10718

(d) : double precision, (q) : quadruple precision.
program-1 : sample program
program-2 : last integration = numerical

@ Accuracy of the library is similar to golem95 package.
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@ 2-, 3-point functions are expressed with F'p, exactly for any combination of
physical parameters and any space-time dimensions.

@ 4-point functions are expressed with Aomoto-Gelfand hypergeometric
functions for any combination of physical parameters.

Up to O(e?), they are expressed with Fp.
@ A program library of F and Fp is under developing.

@ Sample numerical calculations of box integration for massless QCD with IR
divergences agree with golem95 package.
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Discussion

@ GKZ-hypergeometric functions.

o |.M.Gel'fand, A.V.Zelevinsky, M.M.Kapranov, Funk. Anal. Appl. 23
(1989), 94-106.

@ |.M.Gel'fand, A.V.Zelevinsky, M.M.Kapranov, Adv. in Math. 84
(1990), 255-271

@ Power series (I'-series) expansions, differential equations and integral
representations are known.

@ Integral representations:

(o, B; P /HP Ty ey Ty )N xfl xﬁ" dxy -+ - dxy,,

where P; are (Laurent) polynomials.

They say “practically all integrals which arise in quantum field theory.
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Thank you!
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