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Introducing Form 4

Form is a symbolic algebra package

It is developed at Nikhef by Jos Vermaseren et al.

Recently, version 4.0β has been released

It includes many new features

This talk is about one of them: polynomial algebra
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Overview of polynomial algebra

Polynomial algebra in Form basically consists of:

Greatest common divisor

Factorization

PolyRatFuns

All three are discussed with examples

Next, an analytic version of “Mincer” and future applications are
discussed
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Polynomial manipulation

Distributed variable sparse and degree dense representation of
polynomials is used:

p =
∑
terms

axiyjzk

Needs conversions from Form expressions, but is faster

Fast algorithms for multiplying and division using heaps are
implemented
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Greatest common divisor

The function gcd_ returns the greatest common divisor of its
arguments

Example code:

Symbols x,y;
Local E = gcd_(x^2+x*y, y^2+x*y);
Print;
.end

E =
y + x;

Note: Form 3 would return E = 1
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Greatest common divisor algorithms

For small polynomials, a heuristic that substitutes integers and
performs integer gcd calculations is used

For large polynomials, Zippel’s modular algorithm is used

Efficient for both sparse and dense polynomials

Speed is comparable to Mathematica
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Factorization of function arguments

The statement FactArg factorizes the argument of a function

Example code:

Symbols k,i,f,e,h;
CFunction N;
Local E = N(k*f+k*e+k*h+i*f+i*e+i*h);
FactArg N;
Print;
.end

E =
N(i + k,h + e + f);

Note: in Form 3 this function argument does not factorize

For backward compatibility: On OldFactArg;
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Factorization of dollar variables

The preprocessor statement #Factorize factorizes a dollar variable

Example code:

Symbols x,y;
#$a = x^2-y^2;
#Factorize $a;

#do i=1,‘$a[0]’
#write "%$", $a[‘i’];

#enddo

-y+x
y+x

Analogous Factorize for run time factorization

Syntax for factorizing expressions is coming soon
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Factorization algorithms

For univariate polynomials Berlekamp’s algorithm is used

Multivariate polynomials are reduced to univariate and afterwards
Hensel lifting is used to reconstruct multivariate factors

To factorize this polynomial

-6272714818668017*a^35*b^22*c^20*d^9*e^21 -
6867348605700329*a^34*b^33*c^19*d^11*e^36 +
323798222821062*a^34*b^20*c^29*d^8*e^18 +

(... 10 more terms ...) +
2081169781417560*a^28*b^10*c^13*d^27*e^12 -
285878431480222*a^28*b^4*c^25*d^13*e^13 -
520827763173144*a^27*b^4*c^19*d^24*e^11

Form takes 9 sec and Mathematica takes 900 sec
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PolyRatFuns

Analogous to Form’s PolyFun, rational coefficients can be used with
PolyRatFun
The first argument of the function serves as numerator and the
second as denominator
Example code:

Symbols x,y,z;
CFunction f;
PolyRatFun f;

Local E = x * f(y,z) + x * f(y,1-z)
+ x^2 * f(y^2-1,y-1);

Print;
.end

E =
x*f( - y,z^2 - z) + x^2*f(y + 1,1);
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Application: MincerExact

Mincer (program for 3-loop massless propagator diagrams) works in
expansions in ε = (4−D)/2, typically up to 6th power

Big tables with expansions of Pochhammer symbols and alike are
needed

Using PolyRatFuns MincerExact needs no expansions at all

Code is much cleaner/shorter and only slightly slower

Results for Mellin moments look like:

VALUE=GschemeConstants(0,0)^2*GschemeConstants(2,0)*
cf^2*rat(-192*ep^7+944*ep^6-1824*ep^5+1680*ep^4-640*
ep^3-48*ep^2+96*ep-16,12*ep^3+36*ep^2+33*ep+9)
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Application: MincerExact

Now have a closer look at an answer of MincerExact:

Symbol ep,a,b,c,d;
CFunction rat,num,den;
Local E = rat(-192*ep^7+944*ep^6-1824*ep^5+1680*ep^4
-640*ep^3-48*ep^2+96*ep-16,12*ep^3+36*ep^2+33*ep+9);

id rat(a?,b?) = num(a)*den(b);
FactArg den;
ChainOut den;
id den(a?number_) = 1/a;
Print +f +s;
.sort

E =+1/3*num(-16+96*ep-48*ep^2-640*ep^3+1680*ep^4
-1824*ep^5+944*ep^6-192*ep^7)*den(1+ep)*
den(1+2*ep)*den(3+2*ep);
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Application: MincerExact

Make a partial fraction expansion:

SplitArg den;
FactArg den;
id den(a?,ep,b?) = 1/b*den(a/b,ep);
Repeat id den(a?,ep)*den(b?,ep) =

(den(a,ep)-den(b,ep)) / (b-a);
Print +f +s;
Bracket num;
.sort

E=+num(-16+96*ep-48*ep^2-640*ep^3+1680*ep^4
-1824*ep^5+944*ep^6-192*ep^7)*(
+1/6*den(1/2,ep)
+1/6*den(3/2,ep)
-1/3*den(1,ep)
);
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Application: MincerExact

Rewrite it once more:

id num(a?) = a;
Repeat id ep*den(a?,ep) = 1 - a*den(a,ep);
Print +f +s;
.sort

E= -7828/3
+3803/3*ep
-488*ep^2
+380/3*ep^3
-16*ep^4
+243/8*den(1/2,ep)
+153125/24*den(3/2,ep)
-5120/3*den(1,ep);
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Application: MincerExact

Finally, expand around ε = 0 up to 6th order:

Symbol ep(:6);
Repeat id den(a?,ep) = 1/a - ep/a * den(a,ep);
Print +f +s;
.end

E= -16/9
+464/27*ep
-4960/81*ep^2
+21152/243*ep^3
+65264/729*ep^4
-1744048/2187*ep^5
+16761728/6561*ep^6;
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Future work

Code simplification

Implement Buchberger’s algorithm for finding Gröbner basis

Implement LaPorta’s algorithm for reducing Feynman integrals

Determine all Mellin moments N for D.I.S.
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The end

Questions?
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