Polynomial Algebra in Form 4

Jan Kuipers

Nikhef theory group
Amsterdam, The Netherlands

ACAT - $6^{\text {th }}$ September 2011
nitict

- Form is a symbolic algebra package

■ It is developed at Nikhef by Jos Vermaseren et al.
■ Recently, version 4.0β has been released

- It includes many new features

■ This talk is about one of them: polynomial algebra

■ Polynomial algebra in Form basically consists of:

- Greatest common divisor
- Factorization
- PolyRatFuns
- All three are discussed with examples
- Next, an analytic version of "Mincer" and future applications are discussed

■ Distributed variable sparse and degree dense representation of polynomials is used:

$$
p=\sum_{\text {terms }} a x^{i} y^{j} z^{k}
$$

■ Needs conversions from Form expressions, but is faster

- Fast algorithms for multiplying and division using heaps are implemented
- The function gcd_ returns the greatest common divisor of its arguments
- Example code:

$$
\begin{aligned}
& \text { Symbols } x, y \text {; } \\
& \text { Local } E=\operatorname{gcd}_{-}\left(x^{\wedge} 2+x * y, y^{\wedge} 2+x * y\right) ; \\
& \text { Print; } \\
& \text {.end } \\
& E= \\
& \quad y+x
\end{aligned}
$$

- Note: Form 3 would return E = 1

■ For small polynomials, a heuristic that substitutes integers and performs integer gcd calculations is used

■ For large polynomials, Zippel's modular algorithm is used

- Efficient for both sparse and dense polynomials
- Speed is comparable to Mathematica
- The statement FactArg factorizes the argument of a function
- Example code:

```
    Symbols k,i,f,e,h;
    CFunction N;
    Local E = N(k*f+k*e+k*h+i*f+i*e+i*h);
    FactArg N;
    Print;
    .end
E =
    N(i + k,h + e + f);
```

■ Note: in Form 3 this function argument does not factorize
■ For backward compatibility: On OldFactArg;

■ The preprocessor statement \#Factorize factorizes a dollar variable

- Example code:

$$
\begin{aligned}
& \text { Symbols } x, y ; \\
& \text { \#\$a = x^2-y^2; } \\
& \text { \#Factorize \$a; } \\
& \text { \#do i=1,'\$a[0]' } \\
& \quad \text { \#write "\%\$", \$a[‘i']; } \\
& \text { \#enddo } \\
& -y+x \\
& y+x
\end{aligned}
$$

- Analogous Factorize for run time factorization

■ Syntax for factorizing expressions is coming soon

■ For univariate polynomials Berlekamp's algorithm is used

- Multivariate polynomials are reduced to univariate and afterwards Hensel lifting is used to reconstruct multivariate factors
- To factorize this polynomial

$$
\begin{aligned}
& -6272714818668017 * a^{\wedge} 35 * b^{\wedge} 2^{2} * c^{\wedge} 20 * d^{\wedge} 9 * e^{\wedge} 21- \\
& 6867348605700329 * a^{\wedge} 34 * b^{\wedge} 33 * c^{\wedge} 19 * d^{\wedge} 11 * e^{\wedge} 36+ \\
& 32379822821062 * a^{\wedge} 34 * b^{\wedge} 20 * c^{\wedge} 29 * d^{\wedge} 8 * e^{\wedge} 18+ \\
& (\ldots 10 \text { more terms } \ldots)+ \\
& 2081169781417560 * a^{\wedge} 28 * b^{\wedge} 10 * c^{\wedge} 13 * d^{\wedge} 27 * e^{\wedge} 12- \\
& 285878431480222 * a^{\wedge} 28 * b^{\wedge} 4 * c^{\wedge} 25 * d^{\wedge} 13 * e^{\wedge} 13- \\
& 520827763173144 * a^{\wedge} 27 * b^{\wedge} 4 * c^{\wedge} 19 * d^{\wedge} 24 * e^{\wedge} 11
\end{aligned}
$$

Form takes 9 sec and Mathematica takes 900 sec

■ Analogous to Form's PolyFun, rational coefficients can be used with PolyRatFun

- The first argument of the function serves as numerator and the second as denominator
- Example code:

$$
\begin{aligned}
& \text { Symbols } x, y, z \text {; } \\
& \text { CFunction } f ; \\
& \text { PolyRatFun } f ;
\end{aligned}
$$

$$
\begin{aligned}
\text { Local } E & =x * f(y, z)+x * f(y, 1-z) \\
& +x^{\wedge} 2 * f\left(y^{\wedge} 2-1, y-1\right) ;
\end{aligned}
$$

Print;
.end

$$
\begin{aligned}
& E= \\
& \quad x * f\left(-y, z^{\wedge} 2-z\right)+x^{\wedge} 2 * f(y+1,1) ;
\end{aligned}
$$

■ Mincer (program for 3-loop massless propagator diagrams) works in expansions in $\epsilon=(4-D) / 2$, typically up to 6 th power
■ Big tables with expansions of Pochhammer symbols and alike are needed

- Using PolyRatFuns MincerExact needs no expansions at all

■ Code is much cleaner/shorter and only slightly slower
■ Results for Mellin moments look like:

VALUE=GschemeConstants (0,0) ${ }^{2} 2 *$ GschemeConstants $(2,0) *$ cf^2*rat ($-192 *$ ep $^{\wedge} 7+944 * e p^{\wedge} 6-1824 * e p^{\wedge} 5+1680 * e p \wedge 4-640 *$ ep^3-48*ep^2+96*ep-16,12*ep^3+36*ep^2+33*ep+9)

■ Now have a closer look at an answer of MincerExact:

Symbol ep,a,b,c,d;
CFunction rat, num, den;
Local E = rat (-192*ep^7+944*ep^6-1824*ep^5+1680*ep^4 $\left.-640 * e)^{\wedge} 3-48 * e{ }^{\wedge} \wedge 2+96 * e p-16,12 * e{ }^{\wedge} \wedge 3+36 * e p \wedge 2+33 * e p+9\right)$;
id rat(a?,b?) = num (a)*den(b);
FactArg den;
ChainOut den;
id den(a?number_) = 1/a;
Print +f +s;
.sort

$$
\begin{aligned}
\mathrm{E}= & +1 / 3 * \operatorname{num}\left(-16+96 * e \mathrm{ep}-48 * \mathrm{ep}^{\wedge} 2-640 * \mathrm{ep}^{\wedge} 3+1680 * \mathrm{ep}^{\wedge} 4\right. \\
& \left.-1824 * \mathrm{ep}^{\wedge} 5+944 * \mathrm{ep}^{\wedge} 6-192 * \mathrm{ep}^{\wedge} 7\right) * \operatorname{den}(1+\mathrm{ep}) * \\
& \operatorname{den}(1+2 * \mathrm{ep}) * \operatorname{den}(3+2 * e \mathrm{ep}) ;
\end{aligned}
$$

Application: MincerExact

■ Make a partial fraction expansion:

SplitArg den;
FactArg den;
id den(a?,ep,b?) = 1/b*den($a / b, e p$);
Repeat id den(a?,ep)*den(b?,ep) = (den (a, ep)-den (b,ep)) / (b-a);
Print +f +s;
Bracket num;
.sort

$$
\begin{aligned}
\mathrm{E}=+\mathrm{num} & \left(-16+96 * \mathrm{ep}^{-} 48 * \mathrm{ep}^{\wedge} 2-640 * \mathrm{ep}^{\wedge} 3+1680 * \mathrm{ep}^{\wedge} 4\right. \\
& \left.-1824 * \mathrm{ep}^{\wedge} 5+944 * \mathrm{ep}^{\wedge} 6-192 * \mathrm{ep}^{\wedge} 7\right) *(\\
& +1 / 6 * \operatorname{den}(1 / 2, \mathrm{ep}) \\
& +1 / 6 * \operatorname{den}(3 / 2, \mathrm{ep}) \\
& -1 / 3 * \operatorname{den}(1, \mathrm{ep}) \\
&)
\end{aligned}
$$

Application: MincerExact

- Rewrite it once more:
id num(a?) = a;
Repeat id ep*den(a?,ep) = 1 - a*den(a,ep);
Print +f +s;
.sort

$$
\begin{aligned}
\mathrm{E}= & -7828 / 3 \\
& +3803 / 3 * \mathrm{ep} \\
& -488 * \mathrm{p}^{\wedge} 2 \\
& +380 / 3 * \mathrm{ep}^{\wedge} 3 \\
& -16 * \mathrm{ep}^{\wedge} 4 \\
& +243 / 8 * \operatorname{den}(1 / 2, \mathrm{ep}) \\
& +153125 / 24 * \operatorname{den}(3 / 2, \mathrm{ep}) \\
& -5120 / 3 * \operatorname{den}(1, \mathrm{ep}) ;
\end{aligned}
$$

■ Finally, expand around $\epsilon=0$ up to 6th order:

Symbol ep(:6);
Repeat id den(a?,ep) = 1/a - ep/a * den(a,ep);
Print +f +s;
.end

$$
\begin{aligned}
\mathrm{E}= & -16 / 9 \\
& +464 / 27 * e \mathrm{ep} \\
& -4960 / 81 * \mathrm{ep}^{\wedge} 2 \\
& +21152 / 243 * \mathrm{ep}^{\wedge} 3 \\
& +65264 / 729 * \mathrm{ep}^{\wedge} 4 \\
& -1744048 / 2187 * \mathrm{ep}^{\wedge} 5 \\
& +16761728 / 6561 * \mathrm{ep}^{\wedge} 6 ;
\end{aligned}
$$

- Code simplification

■ Implement Buchberger's algorithm for finding Gröbner basis

■ Implement LaPorta's algorithm for reducing Feynman integrals

■ Determine all Mellin moments N for D.I.S.

Questions?

