Polynomial Algebra in Form 4

Jan Kuipers

Nikhef theory group
Amsterdam, The Netherlands

ACAT — 6" September 2011

N
NI!!EF

Introducing Form 4

m Form is a symbolic algebra package

m It is developed at Nikhef by Jos Vermaseren et al.

Recently, version 4.0 has been released

It includes many new features

m This talk is about one of them: polynomial algebra

Overview of polynomial algebra

m Polynomial algebra in Form basically consists of:

m Greatest common divisor
m Factorization

m PolyRatFuns
m All three are discussed with examples

m Next, an analytic version of “Mincer” and future applications are
discussed

Polynomial manipulation

m Distributed variable sparse and degree dense representation of

polynomials is used:
p = Z axtyl ZF

terms

m Needs conversions from Form expressions, but is faster

m Fast algorithms for multiplying and division using heaps are
implemented

Greatest common divisor

m The function gcd_ returns the greatest common divisor of its
arguments

m Example code:

Symbols x,y;

Local E = gcd_(x"2+xxy, y 2+x*y);
Print;

.end

E=
y + X;

m Note: Form 3 would return E = 1

Greatest common divisor algorithms

For small polynomials, a heuristic that substitutes integers and
performs integer gcd calculations is used

For large polynomials, Zippel's modular algorithm is used

Efficient for both sparse and dense polynomials

m Speed is comparable to Mathematica

Factorization of function arguments

m The statement FactArg factorizes the argument of a function

m Example code:

Symbols k,i,f,e,h;

CFunction N;

Local E = N(k*f+k*e+kxh+ixf+ixe+ixh);
FactArg N;

Print;

.end

E=
N(i + k,h + e + f);

m Note: in Form 3 this function argument does not factorize

m For backward compatibility: On 01dFactArg;

Factorization of dollar variables

m The preprocessor statement #Factorize factorizes a dollar variable

m Example code:
Symbols x,y;
#%a = x"2-y"2;
#Factorize $a;

#do i=1, ‘$al0]’
#urite "%$", $al‘i’];
#enddo

y+x
m Analogous Factorize for run time factorization

m Syntax for factorizing expressions is coming soon

Factorization algorithms

m For univariate polynomials Berlekamp's algorithm is used

m Multivariate polynomials are reduced to univariate and afterwards
Hensel lifting is used to reconstruct multivariate factors

m To factorize this polynomial
-6272714818668017*a"~35%b"22%c~20*%d"9*e"21 -
6867348605700329%a~34%b"33*%c~19*%d"11*e"36 +
323798222821062*a"34*b"20*c"29%d"8*e”~18 +
(... 10 more terms ...) +

2081169781417560%a"28*b~10*c~13*d"27*e"~12 -
285878431480222%a"28*b"4*c~25%d"13%e”~13 -
520827763173144*a"27*b"4*c~19*d"24*e" 11

Form takes 9 sec and Mathematica takes 900 sec

PolyRatFuns

m Analogous to Form's PolyFun, rational coefficients can be used with
PolyRatFun
m The first argument of the function serves as numerator and the
second as denominator
m Example code:
Symbols x,y,Z;
CFunction f;
PolyRatFun f;

Local E = x * f(y,z) + x * £(y,1-2)
+x72 % £(y"2-1,y-1);

Print;

.end

E =
x*f(- y,z°2 - z) + x"2*%f(y + 1,1);

Application: MincerExact

m Mincer (program for 3-loop massless propagator diagrams) works in
expansions in € = (4 — D)/2, typically up to 6th power

m Big tables with expansions of Pochhammer symbols and alike are
needed

m Using PolyRatFuns MincerExact needs no expansions at all
m Code is much cleaner/shorter and only slightly slower

m Results for Mellin moments look like:

VALUE=GschemeConstants (0,0) "2*GschemeConstants (2,0) *
cf~2%rat (-192%ep”7+944*ep~6-1824%ep”5+1680%ep”4-640%
ep”~3-48%ep~2+96*ep-16,12*ep~3+36*ep”~2+33*ep+9)

Application: MincerExact

m Now have a closer look at an answer of MincerExact:

Symbol ep,a,b,c,d;

CFunction rat,num,den;

Local E = rat(-192*ep”7+944xep~6-1824*ep~5+1680*ep~4
-640*ep~3-48*ep~2+96*ep-16, 12*xep~3+36*ep~2+33*ep+9) ;

id rat(a?,b?) = num(a)*den(b);

FactArg den;

ChainQOut den;

id den(a?number_) = 1/a;

Print +f +s;

.sort

E =+1/3*num(-16+96*ep-48*ep~2-640*ep~3+1680*ep~4
-1824%ep~5+944xep~6-192*%ep~7) *den (1+ep) *
den(1+2*ep) *den (3+2*ep) ;

Application: MincerExact

m Make a partial fraction expansion:

SplitArg den;

FactArg den;

id den(a?,ep,b?) = 1/bxden(a/b,ep);

Repeat id den(a?,ep)*den(b?,ep) =
(den(a,ep)-den(b,ep)) / (b-a);

Print +f +s;

Bracket num;

.sort

E=+num(-16+96*ep-48*ep~2-640*ep~3+1680*ep~4
-1824*ep~5+944%ep~6-192*ep”7) * (
+1/6xden(1/2,ep)
+1/6*den(3/2,ep)
-1/3*den(1,ep)
)3
~ wB@r J Kupes Polynomial Algebrain Form4 13/17

Application: MincerExact

m Rewrite it once more:

id num(a?) = a;

Repeat id ep*den(a?,ep) = 1 - axden(a,ep);
Print +f +s;

.sort

E= -7828/3
+3803/3*ep
-488*ep”~2
+380/3%*ep~3
-16*ep~4
+243/8%den(1/2,ep)
+153125/24*den(3/2,ep)
-5120/3*den(1,ep) ;

Application: MincerExact

m Finally, expand around € = 0 up to 6th order:

Symbol ep(:6);

Repeat id den(a?,ep) = 1/a - ep/a * den(a,ep);
Print +f +s;

.end

E= -16/9
+464/2T*ep
-4960/81*ep~2
+21152/243%ep~3
+65264/729%ep~4
-1744048/2187*ep~5
+16761728/6561*%ep”6;

Code simplification

Implement Buchberger's algorithm for finding Grobner basis

Implement LaPorta’s algorithm for reducing Feynman integrals

m Determine all Mellin moments N for D.I.S.

Questions?

