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Abstract. We present an algebraic approach to one-loop tensor integral reduction. The
integrals are presented in terms of scalar one- to four-point functions. The reduction is worked
out explicitly until five-point functions of rank five. The numerical C++ package PJFry
evaluates tensor coefficients in terms of a basis of scalar integrals, which is provided by an
external library, e.g. QCDLoop. We shortly describe installation and use of PJFry. Examples
for numerical results are shown, including a special treatment for small or vanishing inverse four-
point Gram determinants. An extremely efficient application of the formalism is the immediate
evaluation of complete contractions of the tensor integrals with external momenta. This leads
to the problem of evaluating sums over products of signed minors with scalar products of
chords. Chords are differences of external momenta. These sums may be evaluated analytically
in a systematic way. The final expressions for the numerical evaluation are then compact
combinations of the contributing basic scalar functions.

1. Tensor reductions
The reduction of tensorial Feynman integrals to scalar Feynman integrals is an old technique.
A systematic approach has been developed for one- to four-point functions in [1]. The simple
case of a self-energy vector

Iµ2 =

∫
ddk

iπd/2
kµ

[k2 −M2
1 ] [(k + p)2 −M2

2 ]
(1)

= pµB1

is evaluated in terms of scalar functions A0, B0 as follows:

pµI
µ
2 = p2B1(p,M1,M2)

=

∫
ddk

iπd/2
pk

[k2 −M2
1 ] [(k + p)2 −M2

2 ]
≡

∫
ddk

iπd/2
pk

D1 D2

=
1

2

∫
ddk

iπd/2

[
D2 − (p2 −M2

2 −M2
1 )−D1

D1 D2

]
, (2)

B1(p,M1,M2) =
1

2p2

[
A0(M1)−A0(M2)− 1

2
(p2 −M2

2 −M2
1 )B0(p,M1,M2)

]
. (3)



This works fine for many situations, but for higher-point functions and for specific kinematical
situations other approaches are more useful. We advocate here Davydychev’s approach [2] and
represent n-point tensors by n-point scalars in higher dimensions and with higher indices (powers
of the propagators Di = 1/[(k − qi)2 −m2

i ]). An example is:

Iµνλ5 =

∫
ddk

iπd/2
kµkνkλ

D1 · · ·D5
(4)

= −
4∑

i,j,k=1

qµi q
ν
j q
λ
knijkI

[d+]3

5,ijk +
1

2

n−1∑
i=1

(gµνqλi + gµλqνi + gνλqµi )I
[d+]2

5,i ,

with nijk = (1 + δij)(1 + δik + δjk). The I
[d+]L

5,ijk is defined here in D = d−2ε+ 2L dimensions and
propagators of lines i, j, k have a power raised by one unit. In a next step Tarasov’s dimensional
recurrences [3, 4] may be applied in order to diminish the dimensions of the scalar integrals:1

νj
(
j+I

[d+]
5

)
=

1

()5

[
−
(
j

0

)
5

+

5∑
k=1

(
j

k

)
5

k−
]
I5, (5)

and

(d−
5∑
i=1

νi + 1)I
[d+]
5 =

1

()5

[(
0

0

)
5

−
5∑

k=1

(
0

k

)
5

k−
]
I5, (6)

where the operators i±, j±,k± act by shifting the indices νi, νj , νk by ±1.
After dedicated simplifications [5, 6], the tensor of rank R = 3 may be written as follows:

Iµ ν λ5 =
4∑

i,j,k=1

qµi q
ν
j q

λ
kEijk +

4∑
k=1

g[µνq
λ]
k E00k, (7)

with the tensor coefficients

E00j =
5∑
s=1

1(
0
0

)
5

[
1

2

(
0s

0j

)
5

I
[d+],s
4 − d− 1

3

(
s

j

)
5

I
[d+]2,s
4

]
, (8)

Eijk = −
5∑
s=1

1(
0
0

)
5

{[(
0j

sk

)
5

I
[d+]2,s
4,i + (i↔ j)

]
+

(
0s

0k

)
5

νijI
[d+]2,s
4,ij

}
. (9)

At this stage, we have reached:

• All scalar 5-point integrals are eliminated.

• No inverse Gram determinants ()5 have appeared.

• Scalar 4-point integrals in higher dimensions and/or with higher indices are present yet,

e.g. I
[d+]2,s
4,ij .

• Inverse Cayley determinants
(

0
0

)
5

have appeared.

The integrals I
[d+]2,s
4,ij arise from 5-point integrals by shrinking line s.

1 The explanation of notations may be found in any of the articles [5, 3, 4, 6].For Gram determinants and signed
minors see Appendix A.



By further, nontrivial manipulations [6] we have avoided shifted indices and isolated the
inverse Gram determinants ()4 in the higher-dimensional scalar 4-point functions; see e.g. in
(9):

I
[d+],s
4,i =

1(
0s
0s

)
5

[
−
(

0s

is

)
5

(d− 3)I
[d+],s
4 +

5∑
t=1

(
0st

0si

)
5

Ist3

]
, (10)

νijI
[d+]2

4,ij =

(
0
i

)
4(

0
0

)
4

(
0
j

)
4(

0
0

)
4

(d− 2)(d− 1)I
[d+]2

4 +

(
0i
0j

)
4(

0
0

)
4

I
[d+]
4

−
(

0
j

)
4(

0
0

)
4

d− 2(
0
0

)
4

4∑
t=1

(
0t

0i

)
4

I
[d+],t
3 +

1(
0
0

)
4

4∑
t=1

(
0t

0j

)
4

I
[d+],t
3,i . (11)

These equations contain yet the generic 4-point and (partly indexed) 3-point functions in higher

dimensions, I
[d+],s
4 , I

[d+],t
3,i , etc. Several strategies are now possible:

• Evaluate them analytically in d+ 2l − 2ε dimensions – if you may do that.

• Evaluate them numerically in d+ 2l − 2ε dimensions.

• Reduce them further by recurrences → apply (6) – but buy some towers of 1/()4 at this
stage.

• Make a small Gram determinant expansion → apply (6) the other way round

The last two items are done here.
For non-small 4-point Gram determinants, the direct, iterative use of (6) yields

I
[d+]l

4 =

[(
0
0

)
4

()4

I
[d+]l−1

4 −
4∑
t=1

(
t
0

)
4

()4

I
[d+]l−1,t
3

]
1

d+ 2l − 5
, (12)

I
[d+]l,t
3 =

(0t0t)4(
t
t

)
4

I
[d+]l−1,t
3 −

4∑
u=1,u6=t

(
ut
0t

)
4(

t
t

)
4

I
[d+]l−1,tu
2

 1

d+ 2l − 4
, (13)

and we are done. This works fine if ()4 is not small [and also the
(
t
t

)
4
].

For small ()4, one may apply the recurrence relation the other way round and get:

IDn =

n∑
k

(
0
k

)
n(

0
0

)
n

ID,kn−1

− ()n(
0
0

)
n

[(D + 1)−
n∑
i

νi]

×
[

n∑
k

(
0
k

)
n(

0
0

)
n

ID+2,k
n−1 − ()n(

0
0

)
n

[(D + 3)−
n∑
i

νi]I
D+4
n

]
+ · · · (14)

This works in fact fine, especially when improved by Pade approximations. For explicit examples
see [6] and sec. 2 on the PJFry package here. The approach has been independently implemented
and used by Reina et al. [7].



2. PJFry
The goal of the C++ package PJFry is a stable and fast open-source implementation of tensor
reduction, suitable for any physically relevant kinematics.2 It performs the reduction of 5-point
1-loop tensor integrals up to rank 5. The 4- and 3-point tensor integrals are obtained as a
by-product. Main features are:

• Any combination of (real) internal or external masses

• Automatic selection of optimal formula for each coefficient

• Leading ()5 are eliminated in the reduction

• Small ()4 are avoided using asymptotic expansions where appropriate

• Cache system for tensor coefficients and signed minors

• Interfaces for C, C++, FORTRAN and Mathematica

• Uses QCDLoop [8, 9] or OneLOop [10] for 4-dim scalar integrals

• Available from the project webpage https://github.com/Vayu/PJFry/ [11, 6]

The installation of PJFry may be performed following the instructions given at the project
webpage.
The project subdirectories are
./src - the library source code
./mlink - the MathLink interface
./examples - the FORTRAN examples of library use, built with make check

A build on Unix/Linux and similar systems is done in a standard way by sequential performing
./configure, make, make install. See the INSTALL file for a detailed description of the ./configure
options.

The PJFry is used as one option of the GoSam package [12].
The functions for tensor coeffcients for up to rank-5 pentagon integrals are declared in the

Mathematica interface:

In:= Names["PJFry‘*"]Names[PJFry]

{A0v0, B0v0, B0v1, B0v2, C0v0, C0v1, C0v2, C0v3, \

D0v0, D0v1, D0v2, D0v3, D0v4, E0v0, E0v1, E0v2, \

E0v3, E0v4, E0v5, GetMu2, SetMu2}

Out= {A0v0, B0v0, B0v1, B0v2, C0v0, C0v1, C0v2, C0v3, \

D0v0, D0v1, D0v2, D0v3, D0v4, E0v0, E0v1, E0v2, \

E0v3, E0v4, E0v5, GetMu2, SetMu2}

The syntax is very close to that of e.g. LoopTools/FF:

E0v3[i,j,k,p1s,p2s,p3s,p4s,p5s,s12,s23,s34,s45,s15,m1s,m2s,m3s,m4s,m5s,ep=0]

where:
i, j, k are indices of the tensor coefficient (0 < i ≤ j ≤ k < n),
p1s, p2s, ... are squared external masses p2

i ,
s12, s23, ... are Mandelstam invariants (pi + pj)

2,
m1s,m2s, ... are squared internal masses m2

i ,
ep = 0,−1,−2 selects the coefficient of the ε-expansion.

2 The presentation relies partly on: V. Yundin, One loop tensor reduction program PJFRY, talk at meeting of
SFB/TR9, 15 Nov. 2011, Aachen, Germany.

https://github.com/Vayu/PJFry/
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Figure 1. Absolute accuracy of E3333 near the region of small Gram determinant. Blue curve:
conventional Passarino-Veltman reduction, red curve: PJFry.
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Figure 2. Relative accuracy of E3333 near the region of small Gram determinant. At x ∼ 0.0015
PJFry switched to the asymtotic expansion.

The average evaluation time per phase-space point on a 2 GHz Core 2 laptop for the evaluation
of all 81 rank 5 tensor form-factors amounts to 2 ms.

Numerical examples are shown in figures 1 and 2 for a rank R = 4 tensor coefficient in a
region, where one of the 4-point sub-Gram determinants becomes small

E3333(0, 0,−6×104(x+ 1), 0, 0, 104,−3.5×104, 2×104,−4×104, 1.5×104, 0, 6550, 0, 0, 8315)

When x = 0, the 4-point Gram determinant vanishes; see Appendix A for details.

3. Contractions of tensor integrals with external momenta
The contents of this section is worked out in detail in [13]. A starting point are representations
of tensors in terms of basis functions IDn , which are independent of the tensor indices {i, j, k, ...}.
Then, one may use contractions with external momenta in order to perform all the sums over
{i, j, k, ...}. This will evidently lead to a significant simplification and shortening of calculations.

To demonstrate the idea, let us look at the most involved 5-point tensor studied:

Iµνλρσ5 =

5∑
s=1

[
5∑

i,j,k,l,m=1

qµi q
ν
j q
λ
kq

ρ
l q
σ
mE

s
ijklm +

5∑
i,j,k=1

g[µνqλi q
ρ
j q
σ]
k E

s
00ijk +

5∑
i=1

g[µνgλρq
σ]
i E

s
0000i

]
.

(15)



In the approach avoiding inverse Gram determinants 1/()5, we have

Esijklm = − 1(
0
0

)
5

{[(
0l

sm

)
5

nijkI
[d+]4,s
4,ijk + (i↔ l) + (j ↔ l) + (k ↔ l)

]
+

(
0s

0m

)
5

nijklI
[d+]4,s
4,ijkl

}
(16)

and simpler expressions. Now, in a next step, one may avoid the appearance of inverse sub-
Gram determinants ()4 and eliminate the higher indices of propagators {i, j, k, . . .}. Then, the
complete dependence on the indices i of the tensor coefficients is contained in the pre-factors
with signed minors: the tensor indices decouple from the integrals.

As an example, we reproduce the 4-point part of I
[d+]4

4,ijkl:

nijklI
[d+]4

4,ijkl =

(
0
i

)(
0
0

) (0j)(
0
0

) (0
k

)(
0
0

) (0l)(
0
0

)d(d+ 1)(d+ 2)(d+ 3)I
[d+]4

4

+

(
0i
0j

)(
0
k

)(
0
l

)
+
(

0i
0k

)(
0
j

)(
0
l

)
+
(

0j
0k

)(
0
i

)(
0
l

)
+
(

0i
0l

)(
0
j

)(
0
k

)
+
(

0j
0l

)(
0
i

)(
0
k

)
+
(

0k
0l

)(
0
i

)(
0
j

)(
0
0

)3 d(d+ 1)I
[d+]3

4

+

(
0i
0l

)(
0j
0k

)
+
(

0j
0l

)(
0i
0k

)
+
(

0k
0l

)(
0i
0j

)(
0
0

)2 I
[d+]2

4 + · · · (17)

In (17), the 3-point terms are not reproduced, and one has to understand the 4-point integrals
to carry the corresponding index s and the signed minors are

(
0
k

)
→
(

0s
ks

)
5

etc.
A chord is the momentum shift of an internal line due to external momenta, Di =

(k − qi)
2 − m2

i + iε, and qi = (p1 + p2 + + pi), with qn = 0. The tensor 5-point integral
of rank R = 1 yields, when contracted with a chord,

qaµI
µ
5 = − 1(

0
0

)
5

5∑
s=1

[
4∑
i=1

(qa · qi)
(

0i

0s

)
5

]
Is4 . (18)

In fact, the sum over i may be performed explicitly:

Σ1,s
a ≡

4∑
i=1

(qa · qi)
(

0s

0i

)
5

= +
1

2

{(
s

0

)
5

(Ya5 − Y55) +

(
0

0

)
5

(δas − δ5s)

}
, (19)

and we get immediately the desired compact result for the contraction of chords (or external
momenta) and tensor integrals:

qaµI
µ
5 = − 1(

0
0

)
5

5∑
s=1

Σ1,s
a Is4 . (20)

Similarly, the tensor 5-point integral of rank R = 2 may be treated:

Iµ ν5 =

4∑
i,j=1

qµi q
ν
jEij + gµνE00, (21)

It has the following tensor coefficients free of 1/()5:

E00 = −
5∑
s=1

1

2

1(
0
0

)
5

(
s

0

)
5

I
[d+],s
4 , (22)

Eij =

5∑
s=1

1(
0
0

)
5

[(
0i

sj

)
5

I
[d+],s
4 +

(
0s

0j

)
5

I
[d+],s
4,i

]
. (23)



p1 pn

p2 pn−1

. . .

. . .

k − q1

k − q2

k − qn

k − qn−1
mn

m1

m2

mn−1

Figure 3. Momenta definitions.

Equation (21) yields for the contractions with chords:

qaµqbνI
µ ν
5 =

4∑
i,j=1

(qa · qi)(qb · qj)Eij + (qa · qb)E00, (24)

and finally (24) simply reads

qaµqbνI
µ ν
5 =

1

4

5∑
s=1

{ (
s
0

)
5(

0s
0s

)
5

(δabδas + δ5s) +

(
s
s

)
5(

0s
0s

)
5

[
(δas − δ5s) (Yb5 − Y55)

+ (δbs − δ5s) (Ya5 − Y55) +

(
s
0

)
5(

0
0

)
5

(Ya5 − Y55) (Yb5 − Y55)
]}
I

[d+],s
4

+
1(
0
0

)
5

5∑
s=1

Σ1,s
b(

0s
0s

)
5

5∑
t=1

Σ2,st
a Ist3 , (25)

with Σ1,s
b from (19) and

Σ2,st
a ≡

4∑
i=1

(qa · qi)
(

0st

0si

)
5

=
1

2
(1− δst)

{(
ts

0s

)
5

(Ya5 − Y55) +

(
0s

0s

)
5

(δat − δ5t)−
(

0s

0t

)
5

(δas − δ5s)

}
, (26)

This can be extended also to higher ranks. We need at most double sums, e.g.:

Σ2,s
ab ≡

4∑
i,j=1

(qa · qi)(qb · qj)
(
si

sj

)
5

=
1

2
(qa · qb)

(
s

s

)
5

− 1

4
()5 (δabδas + δ5s) . (27)

Many of the sums over signed minors, weighted with scalar products of chords are given in [13],
and an almost complete list may be obtained on request from the authors.



4. Summary
We gave an introductory to the one-loop tensor reduction package PJFry and the underlying
algorithms. PJFry may be used for Feynman integrals with up to five external legs. The
treatment of 6-point functions is straightforward, while the expressions for contracted tensor
integrals, exemplified in section 3, have not yet been completely worked out. Both 6-point
functions and contractions are foreseen to be included into PJFry in the near future. The n-
point functions with n > 6 can be conveniently treated following the approach advocated in
[14, 15]. This was worked out after ACAT 2011 in [16].

We gave a presentation of tensor reduction with some focus on recent develoments by our
group. Of course, several other approaches had been worked out in recent years which also
deserve notice, usually treating reductions for arbitrary n. Let us mention few of them, just
as an introduction to the literature. The authors of [17] construct combinations of n-point
and (n − 1)-point scalar integrals that are finite in the limit of vanishing Gram determinant.
The representations are obtained by differentiation with respect to external parameters or by
expanding the scalar integrals in D = 6 − 2ε or higher dimensions. An algorithm proposed
in [18], based on the so-called generalized Bernstein functional relation, is applied and worked
out in [19] for one-loop (tensor) Feynman integrals with n legs. In [20], a set of algorithms is
worked out which are a basis for a fast and reliable numerical calculation of one-loop multi-
leg Feynman diagrams with up to 6 external legs; also with a special attention to potentially
singular points in phase space. In the approach in [21], six 4-point functions in D = 6, one
3-point function in D = 4, and one 2-point function in D dimensions are used for a general
one-loop tensor reduction. All the soft and collinear singularities of general one-loop n-point
integrals are worked out explicitly in [22]. The singular parts are expressed in terms of 3-point
functions. Finally, we like to mention the approach in [23] for n-point functions. The infrared
and ultraviolet divergences are separated analytically from the finite one-loop contributions, and
the latter can then be evaluated numerically using recursion relations.

To summarize, there are a lot of competing algorithms available in principle and worked out
in detail. One may only hope that most of them will be realized in publicly available open-source
software packages for the use by others.

Appendix A. Determinants
The Gram determinant GN of the diagram shown in 3 is

GN = |2qiqj |, i, j = 1, . . . N. (A.1)

We are also using the modified Cayley determinant ()N of a diagram with N internal lines. For
the choice qN = 0, both determinants are related:

()N ≡

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1
1 Y11 Y12 . . . Y1N

1 Y12 Y22 . . . Y2N
...

...
...

. . .
...

1 Y1N Y2N . . . YNN

∣∣∣∣∣∣∣∣∣∣∣
= −GN−1, (A.2)

where the matrix elements are defined by

Yij = −(qi − qj)2 +m2
i +m2

j , (i, j = 1 . . . N). (A.3)

Evidently, the Gram determinant GN does not depend on the masses, and so doesn’t ()N .



Signed minors of ()N are constructed by deleting m rows and m columns from ()N , and
multiplying it with a sign factor:(

j1 j2 · · · jm
k1 k2 · · · km

)
N

≡ (−1)
∑

l(jl+kl)sgn{j} sgn{k}

∣∣∣∣ rows j1 · · · jm deleted
columns k1 · · · km deleted

∣∣∣∣ , (A.4)

where sgn{j} and sgn{k} are the signs of permutations that sort the deleted rows j1 · · · jm and
columns k1 · · · km into ascending order.

Example:

(
0
0

)
N

≡

∣∣∣∣∣∣∣∣∣
Y11 Y12 . . . Y1N

Y12 Y22 . . . Y2N
...

...
. . .

...
Y1N Y2N . . . YNN

∣∣∣∣∣∣∣∣∣ , (A.5)

To be definite, take fig. A1 as a starting point. The example is taken from [24]. The
corresponding 4-point tensor integrals are, in LoopTools/FF [25, 26, 9] notation:

D0i(id, 0, 0, sν̄u, ted, tēµ, sµν̄u, 0,M
2
Z , 0, 0). (A.6)

The Gram determinant is

()4 = − 2tēµ[s2
µν̄u + sν̄uted − sµν̄u(sν̄u + ted − tēµ)], (A.7)

and it vanishes if:

ted → ted,crit =
sµν̄u(sµν̄u − sν̄u + tēµ)

sµν̄u − sν̄u
. (A.8)

In terms of a dimensionless scaling parameter x,

ted = (1 + x)ted,crit, (A.9)

the Gram determinant becomes:

()4 = 2 x sµν̄utēµ(sµν̄u − sν̄u + tēµ). (A.10)

The modified Cayley determinant

(
0

0

)
4

=


2M2

Z M2
Z M2

Z − sµν̄u M2
Z

M2
Z 0 −sν̄u M2

Z
M2
Z − sµν̄u −sν̄u 0 −ted
M2
Z −tēµ −ted 0


= s2

µν̄ut
2
ēµ + 2 M2

Ztēµ[−2sν̄uted + sµν̄u(sν̄u + ted − tēµ)]

+ M4
Z(s2

ν̄u + (ted − tēµ)2 − 2sν̄u(ted + tēµ)) (A.11)

has another dimension. From (14) we see that a small Gram determinant expansion will be
useful when the following dimensionless parameter becomes small:

R =
()4(
0
0

)
4

× S, (A.12)

where S is a typical scale of the process, e.g. we will choose S = sµν̄u.
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Figure A1. A six-point topology (a) leading to four-point functions (b) with realistically
vanishing Gram determinants.
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