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/| Regularization in supersymmetric theories. \

In order to calculate quantum corrections it is necessary to regularize a theory.
Although the physical results do not depend on regularization, a proper choice
of a regularization can simplify the calculations or reveal some features of

quantum corrections.

Most calculations in QFT were made with the dimensional regularization.

However, DREG breaks the supersymmetry and is not convenient for
calculations in supersymmetric theories. That is why most calculations in
supersymmetric theories were made with the dimensional reduction.

For example, the (B-function in supersymmetric theories was calculated up to

the four-loop approximation:
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/Regularization in supersymmetric theories. \

It is well known that the dimensional reduction is not self-consistent.

W.Siegel, Phys.Lett. 94B (1980), 37.

Removing of inconsistencies leads to the loss of the supersymmetry in the
higher loops.

L.V.Avdeev, Phys.Lett. B117 (1982), 317; L.V.Avdeev, A.A.Vladimirov, Nucl.Phys. B219
(1983), 262. V.N.Velizhanin, Nucl.Phys. B818 (2009), 95.

Therefore, regularization of supersymmetric theories is not a trivial problem.

|.Jack, D.R.T.Jones, Regularisation of supersymmetric theories, hep-ph/9707278.

For supersymmetric theories one can use the higher covariant derivative
regularization.

A.A.Slavnov, Nucl.Phys., B31, (1971), 301; Theor.Math.Phys. 13, (1972), 1064.
V.K.Krivoshchekov, Theor.Math.Phys. 36, (1978), 745; P.West, Nucl.Phys. B268, (1986), 113.

ths regularization is self-consistent and does not break the supersymmetry. y
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/ Higher covariant derivative regularization \I

The main idea: To modify a theory in such a way that the inverse propagators

will be proportional to higher degrees of the momentum in the UV region, e.g.

1 1
B2 R2(1+ k2n/A2n)

However, it was not frequently applied for the explicit calculations because

after such a modification loop integrals will have very complicated structure,
and it is very difficult (if possible) to calculate them analytically.

In this talk application of the higher derivative regularization to calculations in
supersymmetric theories is discussed. It is argued that one of the loop integrals
defining the (B-function can be always calculated analytically. The reason is
that the integrands are total derivatives (and even double total derivatives).

For N =1 SQED this can be proved in all loops. As a consequence the exact
B-function is related with the anomalous dimension. (This means that in this

(ase the exact NSVZ [-function is obtained). 4/
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N =1 supersymmetric electrodynamics (SQED),

regularized by higher derivatives

The N=1 SQED in the massless case is described by the action
1

1 ~ ~
g — @Re / d*x 20 W,C°W, + 1 / d*x d*6 (¢*62V¢ + qs*e—?Vqs),

where ¢; and ;5 are chiral matter superfields, V' is a real gauge superfield, and

1 =
W, = 1D2DQV.
We add the term with higher derivatives
1 a
Sreq = @Re /d4xd29 W,C®R(0%/A*)W,
1 ~ ~
+7 /d4x d49( *e2V ¢ + gb*e_zvgb)

where R(0?/A?) is a regulator, e.g. R =1+ 9*"/A*",
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/| The higher derivative regularization and quantization.

The gauge is fixed by adding:
1
64e?

After adding the term with the higher derivatives divergences remain only in

S, r=— / dia d*0 (VRD2D2V + VRDQDQV).

the one-loop approximation. In order to remove them we insert in the
generating functional the Pauli—Villars determinants.

ZJ, Q] = /D/Ll?[(det PV (V, MI))CI exp {iSmg -+ Sources},

Ser=1; > ¢;M? =0; My =ajA. (A is the only dimensionful parameter.)
T I
—1
det PV (V, M) / D& D@e’SP‘/) |

1 _ _ | ~
Spv = /d% 440 ((I)*e2V<I> n c1>*e—2VcI>) n (5 /d% 440 MdD + )
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/Calculation of the ﬁ-function.

The notation is

d4 1 ~
F<2>:/ P d49(——V(—p)82H1/2V(p)d Yo, p/p) +

(2m)* 167
—'—i(qb*)i(—p, 9) oy (p,0) (ZG>Z‘j (v, ,u/p)).
We calculate
d d
dIn A (d_l(O‘OvA/p) — 0‘51) o= T amA (n/A) = 5(;%0)

The main result: (It was obtained as the equality of some well defined
integrals due to the factorization of integrands into total derivatives)

—— (1 — = — 4+ — InZ
a% 77( dln A lnG(aO,A/q)‘q:O) T + T dlnA( nZG(a, p/q)

. (1 — v(ozo(oa/\/u)))-

q=0 i

—an(a,A/u))

\(Without any redefinition of the coupling constant.)
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/ Three-loop calculation for SQED \I

Blawo) / 0 0 In(¢>+ M?) / d*q d*k &2
o 27TallnA Z I 2m)% dgH Oq,, q> +am (2m)* (2m)* k2R3

% 0 8( 1 —Zc ! )[R (1+—21HA)
dq+ 9g, \ ¢ (k + q)? @+ M2 ((k+q)2+M2)) [ 4w

I

(] S | )

J

+47T/ dq d'k d1l e 9 9 ([ 2k
(2m)* (2m)* (2m)* K2Ry >R; Og* O, (g + k)2 (q+1)2(q+ k+1)2

2 N 2(k* + M7)
+q2(q+l~ﬂ)2(q+l)2> XI: I( (¢ + M7)((q + k) + M7)((q¢ +1)> + M7)
1 2 1

“Wa+k+ 02+ M?) " (@ +M)((q+k)2+ M) ((q+1)2+M2)  (q>+ M?)2

y AM; )}
((q+ k)2 + M7)((q+1)2 + M7)

N 2




™~
/NSVZ p-function for N =1 SQED in the three-loop approximationl.

The integrals can be calculated using the identity

d'q 9 0 (fl@)y_, ds, (=2)¢"f(¢*) 1
/ (2m)* g+ 8%( 72 )‘hm / 2mi ¢ = 32/00)

e—0
Se

where f is a nonsingular function, which rapidly decreases at the infinity. It is
equivalent to the identity

/ (3754 q12 dccj? (¢ = 1617r2 (f(oo) ~ f(O)) = - 1617r? f(0).

(This is a total derivative in the four-dimensional spherical coordinates.)

Comparing the result with the expression for the two-loop anomalous
dimension of the matter superfield we obtain
2

B(a) = = (1= ().
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Two-loop anomalous dimension of the matter superﬁeld.

d*k  d 1 ez A
2
— — —1
Yao) = —2e / (2r)  dIn A K*R? R"“<1 T u>
/ d4 2 _|_ Z / 262
(2m)* t2(k + )2 (82 + M2)((k+t)%2 + M?)

B / dk d  d dedk,l,
(2m)* (2m)* dIn A K*Ry, ARy (k + 1)2

It is much more complicated problem to calculate these integrals analytically.

In general, it seems that these (or similar) integrals should be calculated
numerically. However, in some simplest cases, e.g.

R=1+0""/A",

analytical calculation using the four-dimensional spherical coordinates can be
also possible.
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Some useful tricks'

Two main purposes:

1. How the factorization of the integrands into total derivatives can be proven
exactly in all loops?

2. How one can obtain NSVZ [-function exactly to all loops?

In order to simplify the calculations (in the limit p — 0) and find the
B-function it is possible to substitute

V — é“éaebeb
An integral of a total derivative in the coordinate representation is given by
Tr([a:“,Something]) = 0.

We will try to reduce the sum of diagrams to such commutators.

N %




Summation of subdiagrams.

In order to extract integrals of total derivatives we consider the following sum

of subdiagrams:

_ Dy D? D?
% + = —0°0u0" =3 + 0005
_ D?*D?) D,D?*9,  D?D?
nb/ Y\ a L cpafopy bbb w

Only the terms written by the blue color give nontrivial contributions to the
two-point function of the gauge superfield.

Really, finally it is necessary to obtain
/ d*00%0,0°0,,

and calculating the #-part of the graph can not produce powers of  or 6.

N 2




/ Integration over the matter superfields \I

Let us formally perform Gaussian integration over the matter superfields:

_ /DV I1 (det PV(V, MI))CI
D2 D> ~D?_D%- >}

8 2R(0%/A2)V — j _
XeXp{ /d (462‘/8 ROTIAIWV =55 * 127" — I35 102

where

1 ~ 1
¥ —

1 —(e2V —1)D2D2/1602 1—(e2V —1)D2D?/1602

encode chains of propagators and vertexes.

*

This allows to write the sum of Feynman diagrams for the two-point function
of the gauge superfield in the limit p — 0 in the form of an integral of double
total derivatives. Details can be found in

Qotation: Y = Ty — 0% () a0 13/




/The result ' \

(2) . 2 . 5
= ( — 21| Ir 0k — 41 lr 0 * o*) — &tlr 0*
AT < 2 (T (V] )) 2%Tr(V.Jy % VJgx) — 20Tr(V2J )>

v D2D2
1602

+terms with * + (PV), where Jy = e is the effective vertex.

External lines are attached to different matter loop

U1

—%ﬁlm ((Tr(( = 200004, In(+) = ()] + i0°(7") Gl {In(+) — In(3)])

+(PV))2> v

External lines are attached to|a single matter loop

dliATr<04 {yw [(y“)*) In(x*) + 1n(¥)”> —;1 (PV) — terms with a §-function,

\These expressions are evidently integrals of double total derivatives. 14/




The result '

In order to derive this result it is necessary to use the identity

Tr(0°0a800 ( () 0, AN, BYBa, C} + () (=)™ 6, BY (01, C}
X[y, A] — 4i[6%, [ea,A}}[e‘b,B}[éb,C})) + cyclic perm. of A, B, C

) o ) _
= §Tr (Qaeaebeb(f}ﬂu)ab [y:7A[9b7 B}[QCH C} + (_1)PA [ea’ B}[HI” C}A:| )
+cyclic perm. of A, B, C

where A, B, and C' are operators constructed from the supersymmetric

covariant derivatives and usual derivatives which do not explicitly depend on 6
and 6.

Thus, the sum of diagrams is given by integrals of double total derivatives.
However, if the external lines are attached to a single matter line, the result

does not vanish due to appearing of o-functions.
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/ Obtaining the exact NSVZ S-function \I

The o-functions come from the identity
i) = [~ig— ——| = =218 (pp) = —21%id*(p).

Qualitatively these o-functions correspond to cutting the matter loop

@é@+@+m

It is possible to calculate all contributions of o-functions and compare them

with the two-point Green function of the matter superfield. The result is the
exact NSVZ (-function

N 4




Obtaining the exact NSVZ S-function

D?D?oH D?D, Dy D?
307 07 807
@ b @ (for p = 6)
Yy Yy
G = (14 AG) = 3“1 (AGY 5 EC =Y gy

+
8 )i
‘\ﬁ
’l

(_1)1? P—1_1n
(AGY =1-1nG
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Non-Abelian N =1 supersymmetric theories I

N=1 supersymmetric Yang-Mills theory with matter in the massless case is
described by the action

1 1 . .
S = —Re tr/d4x d20 W, C°W, + 1 /d437 d*0 (¢*)Z(€2V)z“7¢j +

2¢e?
+(é /d% 20 NiT% b, b by + h.c.),

where ¢; are chiral scalar matter superfields, V' is a real scalar gauge
superfield, and the supersymmetric gauge field stress tensor is given by

W — }Dz {6_2VD 62V}
Qa 8 a .

The action is invariant under the gauge transformations

e2V_>ezA 62V6 zA; ¢_>€ZA¢

N




Higher derivative regularization.

For the calculation we use the background field method.

The gauge is fixed by adding the following term:

1
3262

Sor = tr / iz d6 (VDQDQV + VDQDZV).

To regularize the theory we add the following term with the higher covariant
derivatives:

_ 1 4 . 14 (Di)nﬂ 1 4 . 14 *\ @ ﬂ+(Di)m Q| j
SA—@trRe/d rd 0V A2n V+Z_/d rd 0 (¢") {e Aam © L b;

where D, D, and D, are background covariant derivatives.

In order to regularize the remaining one-loop divergences, it is necessary to
introduce Pauli-Villars determinants into the generating functional. As earlier,
we assume that M; = ayA, where a; are constants. (Therefore, there is the
only dimensionful parameter A.)

N o




/ Two-loop (f-function for N = 1 supersymmetric Yang-Mills \
theory

Two-loop calculation gives the following result:

3 2 3 ) .
Bla) = —%02 + a®T(R)Iy + a®C2I, + %C(R)ﬂC(R)jZIQ n
+a®T(R)CI5 + o2C(R); ”Zl — Lt
s

where we do not write the integral for the one-loop ghost contribution and the
integrals Iy—I4 are given below, and the following notation is used:

tr(TATP) =T(R) 67, (TH)(TH = C(R);

fACD ¢BCD —_ (7, 6AB. r=844.
Taking into account Pauli—Villars contributions,

I =1;(0) - Y Li(M;), i=0,2,3
I

Qhere I; are given by 20/
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Io(M) = _77/ (2m)4 dIn A Og* 0q,, { q°
[ = —127‘(2/ d4q d4]€ d 0 0 !
L (27-(-)4 (27‘(‘)4 dln A Ok~ ak’u k2(1 + an/AQn)qQ(l + q2n/A2n)

In (q2(1 +q"" /AT + M2> };

1
@+ k)20 + (g + k)7 /A% }
oo [ dq d%k d 0 0 1
12(M) = 8m / (27)% (27)% dIn A Dgr Dg,, { R2(1+ k2n JA20)
(14 ¢*"/N*™) (1 + (g + k)>™ /A*™) }
(>(1+¢q?™m/A2m)2 + M2)((q + k)?(1 + (¢ + k)2m /A2m)2 + M?2) |
Lo [ d'q d'%% d 0 0 1
I5(M) = 8m / (27)% (27)* dIn A Dq" O, { i+ 02(1 + (g + k)2 /A7)
(L4 K7 /AP (1 /A% |
R0+ R JAT2 4 M) (21 + g2 JAZ)E + M)

]__87T2/ dq d*c d 0 0 1
T (2m)* (2m)4 dIn A Dgr B, | k2(1 + k2™ JA2m)q2(1 + ¢2™ /A%m)

21/

X

1

1
@+ kR (g + k)P A% }




/ Two-loop (-function for N = 1 supersymmetric Yang-Mills \
theory

The result for the two-loop 3-function is given by

B(a) = _(;—w (3C2 - T(R)) + 3’ (- 3C3 +T(R)C> +
+%C(R)¢jO(R)ji> - a2C(Rg)7T3A‘7kW +..

Comparing the result with the one-loop anomalous dimension

: ozC(R)ZJ )\;k )\jkl
yi(a) = S5y SR

gives the exact NSVZ (-function in the considered approximation.

] a? [302 — T(R) + C(R)i;(a )/'r)}
(@) == 27(1 — Cya/27) '

V.A.Novikov, M.A.Shifman, A.l.Vainshtein, V.l.Zakharov, Nucl.Phys. B 229, (1983), 381;
\ Phys.Lett. 166B, (1985), 329; M.A.Shifman, A.l.Vainshtein, Nucl.Phys. B 277, (1986), 456. 22/
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Conclusion '

v It is possible to make analytical multiloop calculations for supersymmetric

theories with the higher covariant derivative regularization. In principle, it
is not very difficult to construct integrals defining different Green
functions.

All integrals defining the (G-function in N = 1 SQED, regularized by higher
derivatives, are integrals of double total derivatives. This allows to
calculate one of the loop integrals analytically.

The factorization of integrands into total derivatives allows to obtain the
exact NSVZ (-function without redefinition of the coupling constant.

Possibly, the factorization of integrands into double total derivatives is a
general feature of supersymmetric theories. At least, this takes place for a
general renormalizable N = 1 supersymmetric theory at the two-loop
level.

23/




Thank you for the attention!




