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Regularization in supersymmetric theories

In order to calculate quantum corrections it is necessary to regularize a theory.

Although the physical results do not depend on regularization, a proper choice

of a regularization can simplify the calculations or reveal some features of

quantum corrections.

Most calculations in QFT were made with the dimensional regularization.

G.t’Hooft, M.Veltman, Nucl.Phys. B44 (1972), 189.

However, DREG breaks the supersymmetry and is not convenient for

calculations in supersymmetric theories. That is why most calculations in

supersymmetric theories were made with the dimensional reduction.

W.Siegel, Phys.Lett. 84B (1979), 193.

For example, the β-function in supersymmetric theories was calculated up to

the four-loop approximation:

S.Ferrara, B.Zumino, Nucl.Phys. B79 (1974) 413; D.R.T.Jones, Nucl.Phys. B87 (1975)

127; L.V.Avdeev, O.V.Tarasov, Phys.Lett. 112 B (1982) 356; I.Jack, D.R.T.Jones, C.G.North,

Phys.Lett B386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander, D.R.T.Jones, P.Kant,

L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.
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Regularization in supersymmetric theories

It is well known that the dimensional reduction is not self-consistent.

W.Siegel, Phys.Lett. 94B (1980), 37.

Removing of inconsistencies leads to the loss of the supersymmetry in the

higher loops.

L.V.Avdeev, Phys.Lett. B117 (1982), 317; L.V.Avdeev, A.A.Vladimirov, Nucl.Phys. B219

(1983), 262. V.N.Velizhanin, Nucl.Phys. B818 (2009), 95.

Therefore, regularization of supersymmetric theories is not a trivial problem.

I.Jack, D.R.T.Jones, Regularisation of supersymmetric theories, hep-ph/9707278.

For supersymmetric theories one can use the higher covariant derivative

regularization.

A.A.Slavnov, Nucl.Phys., B31, (1971), 301; Theor.Math.Phys. 13, (1972), 1064.

V.K.Krivoshchekov, Theor.Math.Phys. 36, (1978), 745; P.West, Nucl.Phys. B268, (1986), 113.

This regularization is self-consistent and does not break the supersymmetry.
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Higher covariant derivative regularization

The main idea: To modify a theory in such a way that the inverse propagators

will be proportional to higher degrees of the momentum in the UV region, e.g.

1
k2
→ 1

k2(1 + k2n/Λ2n)
.

However, it was not frequently applied for the explicit calculations because

after such a modification loop integrals will have very complicated structure,

and it is very difficult (if possible) to calculate them analytically.

In this talk application of the higher derivative regularization to calculations in

supersymmetric theories is discussed. It is argued that one of the loop integrals

defining the β-function can be always calculated analytically. The reason is

that the integrands are total derivatives (and even double total derivatives).

A.Soloshenko, K.S., hep-th/0304083;

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704, (2005), 445.

For N = 1 SQED this can be proved in all loops. As a consequence the exact

β-function is related with the anomalous dimension. (This means that in this

case the exact NSVZ β-function is obtained).
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N = 1 supersymmetric electrodynamics (SQED),
regularized by higher derivatives

The N=1 SQED in the massless case is described by the action

S =
1

4e2
Re

∫
d4x d2θWaC

abWb +
1
4

∫
d4x d4θ

(
φ∗e2V φ+ φ̃∗e−2V φ̃

)
,

where φi and φ̃ are chiral matter superfields, V is a real gauge superfield, and

Wa =
1
4
D̄2DaV.

We add the term with higher derivatives

Sreg =
1

4e2
Re

∫
d4x d2θWaC

abR(∂2/Λ2)Wb

+
1
4

∫
d4x d4θ

(
φ∗e2V φ+ φ̃∗e−2V φ̃

)
where R(∂2/Λ2) is a regulator, e.g. R = 1 + ∂2n/Λ2n.
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The higher derivative regularization and quantization

The gauge is fixed by adding:

Sgf = − 1
64e2

∫
d4x d4θ

(
V RD2D̄2V + V RD̄2D2V

)
.

After adding the term with the higher derivatives divergences remain only in

the one-loop approximation. In order to remove them we insert in the

generating functional the Pauli–Villars determinants.

L.D.Faddeev, A.A.Slavnov, Gauge fields, introduction to quantum theory, Benjamin, Reading, 1990.

Z[J,Ω] =
∫
Dµ

∏
I

(
detPV (V,MI)

)cI

exp
{
iSreg + Sources

}
,∑

I

cI = 1;
∑
I

cIM
2
I = 0; MI = aIΛ. (Λ is the only dimensionful parameter.)

detPV (V,M) =
(∫

DΦ∗DΦeiSP V

)−1

,

SPV =
1
4

∫
d4x d4θ

(
Φ∗e2V Φ + Φ̃∗e−2V Φ̃

)
+
(1

2

∫
d4x d4θMΦΦ̃ + ..

)
.
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Calculation of the β-function

The notation is

Γ(2) =
∫

d4p

(2π)4
d4θ

(
− 1

16π
V(−p) ∂2Π1/2V(p) d−1(α, µ/p) +

+
1
4

(φ∗)i(−p, θ)φj(p, θ) (ZG)ij(α, µ/p)
)
.

We calculate

d

d ln Λ

(
d−1(α0,Λ/p)− α−1

0

)∣∣∣
p=0

= − d

d ln Λ
α−1

0 (α, µ/Λ) =
β(α0)
α2

0

The main result: (It was obtained as the equality of some well defined

integrals due to the factorization of integrands into total derivatives)

β(α0)
α2

0

=
1
π

(
1− d

d ln Λ
lnG(α0,Λ/q)

∣∣∣
q=0

)
=

1
π

+
1
π

d

d ln Λ

(
lnZG(α, µ/q)

− lnZ(α,Λ/µ)
)∣∣∣
q=0

=
1
π

(
1− γ

(
α0(α,Λ/µ)

))
.

(Without any redefinition of the coupling constant.)
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Three-loop calculation for SQED

β(α0)

α2
0

= 2π
d

d ln Λ

{∑
I

cI

∫
d4q

(2π)4
∂

∂qµ
∂

∂qµ

ln(q2 +M2)

q2
+ 4π

∫
d4q

(2π)4
d4k

(2π)4
e2

k2R2
k

× ∂

∂qµ
∂

∂qµ

(
1

q2(k + q)2
−
∑
I

cI
1

(q2 +M2
I )((k + q)2 +M2

I )

)[
Rk

(
1 +

e2

4π2
ln

Λ

µ

)

−2e2

∫ d4t

(2π)4
1

t2(k + t)2
−
∑
J

cJ

∫
d4t

(2π)4
1

(t2 +M2
J)((k + t)2 +M2

J)

)]

+4π

∫
d4q

(2π)4
d4k

(2π)4
d4l

(2π)4
e4

k2Rkl2Rl

∂

∂qµ
∂

∂qµ

{(
− 2k2

q2(q + k)2(q + l)2(q + k + l)2

+
2

q2(q + k)2(q + l)2

)
−
∑
I

cI

(
− 2(k2 +M2

I )

(q2 +M2
I )((q + k)2 +M2

I )((q + l)2 +M2
I )

× 1

((q + k + l)2 +M2
I )

+
2

(q2 +M2
I )((q + k)2 +M2

I )((q + l)2 +M2
I )

− 1

(q2 +M2
I )2

× 4M2
I

((q + k)2 +M2
I )((q + l)2 +M2

I )

)}
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NSVZ β-function for N = 1 SQED in the three-loop approximation

The integrals can be calculated using the identity∫
d4q

(2π)4

∂

∂qµ
∂

∂qµ

(f(q2)
q2

)
= lim
ε→0

∫
Sε

dSµ
(2π)4

(−2)qµf(q2)
q4

=
1

4π2
f(0)

where f is a nonsingular function, which rapidly decreases at the infinity. It is

equivalent to the identity∫
d4q

(2π)4

1
q2

d

dq2
f(q2) =

1
16π2

(
f(∞)− f(0)

)
= − 1

16π2
f(0).

(This is a total derivative in the four-dimensional spherical coordinates.)

Comparing the result with the expression for the two-loop anomalous

dimension of the matter superfield we obtain

β(α) =
α2

π

(
1− γ(α)

)
.

M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett. 42, (1985), 224;

Phys.Lett. 166B, (1986), 334.
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Two-loop anomalous dimension of the matter superfield

γ(α0) = −2e2

∫
d4k

(2π)4

d

d ln Λ
1

k4R2
k

[
Rk

(
1 +

e2

4π2
ln

Λ
µ

)
−
∫

d4t

(2π)4

2e2

t2(k + t)2
+
∑
I

cI

∫
d4t

(2π)4

2e2

(t2 +M2
I )((k + t)2 +M2

I )

]

−
∫

d4k

(2π)4

d4l

(2π)4

d

d ln Λ
4e4kµlµ

k4Rk l4Rl(k + l)2
.

It is much more complicated problem to calculate these integrals analytically.

In general, it seems that these (or similar) integrals should be calculated

numerically. However, in some simplest cases, e.g.

R = 1 + ∂2n/Λ2n,

analytical calculation using the four-dimensional spherical coordinates can be

also possible.
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Some useful tricks

Two main purposes:

1. How the factorization of the integrands into total derivatives can be proven

exactly in all loops?

2. How one can obtain NSVZ β-function exactly to all loops?

In order to simplify the calculations (in the limit p→ 0) and find the

β-function it is possible to substitute

V→ θ̄aθ̄aθ
bθb

An integral of a total derivative in the coordinate representation is given by

Tr
(

[xµ,Something]
)

= 0.

We will try to reduce the sum of diagrams to such commutators.
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Summation of subdiagrams

In order to extract integrals of total derivatives we consider the following sum

of subdiagrams:

+ = −θaθaθ̄b
D̄bD

2

4∂2
+ θaθa

D2

4∂2

+iθ̄b(γµ)baθa
D̄2D2∂µ

∂4
− iθa(γµ)ab

D̄bD
2∂µ

4∂4
+
D̄2D2

16∂4

Only the terms written by the blue color give nontrivial contributions to the

two-point function of the gauge superfield.

Really, finally it is necessary to obtain∫
d4θ θaθaθ̄

bθ̄b,

and calculating the θ-part of the graph can not produce powers of θ or θ̄.
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Integration over the matter superfields

Let us formally perform Gaussian integration over the matter superfields:

Z =
∫
DV

∏
I

(
detPV (V,MI)

)cI

× exp

{
i

∫
d8x

( 1
4e2

V ∂2R(∂2/Λ2)V − j D
2

4∂2
∗ D̄

2

4∂2
j∗ − j̃ D

2

4∂2
∗̃ D̄

2

4∂2
j̃∗
)}

,

where

∗ ≡ 1
1− (e2V − 1)D̄2D2/16∂2

, ∗̃ =
1

1− (e−2V − 1)D̄2D2/16∂2

encode chains of propagators and vertexes.

This allows to write the sum of Feynman diagrams for the two-point function

of the gauge superfield in the limit p→ 0 in the form of an integral of double

total derivatives. Details can be found in

K.S., Nucl.Phys. B 852 (2011), 71.

Notation: y∗µ = xµ − iθ̄a(γµ)abθb.
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The result

?

?

?
0

∆Γ(2)
V =

〈
− 2i

(
Tr(VJ0∗)

)2

− 2iTr(VJ0 ∗VJ0∗)− 2iTr(V2J0∗)
〉

+terms with ∗̃+ (PV ), where J0 = e2V D̄
2D2

16∂2
is the effective vertex.

External lines are attached to different matter loops

−2i
d

d ln Λ

〈(
Tr
(
− 2θcθcθ̄d[θ̄d, ln(∗)− ln(∗̃)] + iθ̄c(γν)cdθd[y∗ν , ln(∗)− ln(∗̃)]

)
+(PV )

)2〉

External lines are attached to a single matter loop

i
d

d ln Λ
Tr
〈
θ4
[
y∗µ,
[
(yµ)∗, ln(∗) + ln(∗̃)

]]〉
+ (PV )− terms with a δ-function,

These expressions are evidently integrals of double total derivatives.
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The result

In order to derive this result it is necessary to use the identity

Tr
(
θaθaθ̄

bθ̄b

(
(γµ)ab[y∗µ, A][θ̄b, B}[θa, C}+ (γµ)ab(−1)PA [θa, B}[θ̄b, C}

×[y∗µ, A]− 4i[θa, [θa, A}}[θ̄b, B}[θ̄b, C}
))

+ cyclic perm. of A, B, C

=
1
3

Tr
(
θaθaθ̄

bθ̄b(γµ)ab
[
y∗µ,A[θ̄b, B}[θa, C}+ (−1)PA [θa, B}[θ̄b, C}A

])
+cyclic perm. of A, B, C

where A, B, and C are operators constructed from the supersymmetric

covariant derivatives and usual derivatives which do not explicitly depend on θ

and θ̄.

Thus, the sum of diagrams is given by integrals of double total derivatives.

However, if the external lines are attached to a single matter line, the result

does not vanish due to appearing of δ-functions.
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Obtaining the exact NSVZ β-function

The δ-functions come from the identity

[xµ,
∂µ
∂4

] = [−i ∂

∂pµ
,− ip

µ

p4
] = −2π2δ4(pE) = −2π2iδ4(p).

Qualitatively these δ-functions correspond to cutting the matter loop

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704, (2005), 445.

- + + . . .

It is possible to calculate all contributions of δ-functions and compare them

with the two-point Green function of the matter superfield. The result is the

exact NSVZ β-function

β(α) =
α2

π

(
1− γ(α)

)
.
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Obtaining the exact NSVZ β-function

+

D̄2D2∂µ

8∂4

D̄2Da

8∂2

D̄bD
2

8∂2

(γµ)ab

y∗µ y∗µ

G−1 = (1 + ∆G)−1 =
∞∑
p=0

(−1)p(∆G)p −
∞∑
p=1

(−1)p(p− 1)
p

(∆G)p

1 +
∞∑
p=1

(−1)p

p
(∆G)p = 1− lnG

?

A
AAU

@
@
@R

�
��	

(for p = 6)
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Non-Abelian N = 1 supersymmetric theories

N=1 supersymmetric Yang-Mills theory with matter in the massless case is

described by the action

S =
1

2e2
Re tr

∫
d4x d2θWaC

abWb +
1
4

∫
d4x d4θ (φ∗)i(e2V )ijφj +

+
(1

6

∫
d4x d2θ λijkφiφjφk + h.c.

)
,

where φi are chiral scalar matter superfields, V is a real scalar gauge

superfield, and the supersymmetric gauge field stress tensor is given by

Wa =
1
8
D̄2
[
e−2VDae

2V
]
.

The action is invariant under the gauge transformations

e2V → eiΛ
+
e2V e−iΛ; φ→ eiΛφ

if (TA)miλmjk + (TA)mjλimk + (TA)mkλijm = 0.
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Higher derivative regularization

For the calculation we use the background field method.

The gauge is fixed by adding the following term:

Sgf = − 1
32e2

tr

∫
d4x d4θ

(
VD2D̄

2
V + V D̄

2
D2V

)
.

To regularize the theory we add the following term with the higher covariant

derivatives:

SΛ =
1

2e2
tr Re

∫
d4x d4θ V

(D2
µ)n+1

Λ2n
V+

1
4

∫
d4x d4θ (φ∗)i

[
eΩ

+ (D2
µ)m

Λ2m
eΩ
]
i
jφj .

where D, D̄, and Dµ are background covariant derivatives.

In order to regularize the remaining one-loop divergences, it is necessary to

introduce Pauli-Villars determinants into the generating functional. As earlier,

we assume that MI = aIΛ, where aI are constants. (Therefore, there is the

only dimensionful parameter Λ.)
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Two-loop β-function for N = 1 supersymmetric Yang-Mills
theory

Two-loop calculation gives the following result:

β(α) = −3α2

2π
C2 + α2T (R)I0 + α3C2

2I1 +
α3

r
C(R)ijC(R)jiI2 +

+α3T (R)C2I3 + α2C(R)ij
λ∗jklλ

ikl

4πr
I4 + . . . ,

where we do not write the integral for the one-loop ghost contribution and the

integrals I0–I4 are given below, and the following notation is used:

tr (TATB) ≡ T (R) δAB ; (TA)ik(TA)kj ≡ C(R)ij ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA.

Taking into account Pauli–Villars contributions,

Ii = Ii(0)−
∑
I

Ii(MI), i = 0, 2, 3

where Ii are given by
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I0(M) = −π
∫

d4q

(2π)4
d

d ln Λ

∂

∂qµ
∂

∂qµ

{
1

q2
ln

(
q2(1 + q2m/Λ2m)2 +M2

)}
;

I1 = −12π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

∂

∂kµ
∂

∂kµ

{
1

k2(1 + k2n/Λ2n)q2(1 + q2n/Λ2n)

× 1

(q + k)2(1 + (q + k)2n/Λ2n)

}
;

I2(M) = 8π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

∂

∂qµ
∂

∂qµ

{
1

k2(1 + k2n/Λ2n)

× (1 + q2m/Λ2m)(1 + (q + k)2m/Λ2m)

(q2(1 + q2m/Λ2m)2 +M2)((q + k)2(1 + (q + k)2m/Λ2m)2 +M2)

}
;

I3(M) = 8π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

∂

∂qµ
∂

∂kµ

{
1

(k + q)2(1 + (q + k)2n/Λ2n)

× (1 + k2m/Λ2m)(1 + q2m/Λ2m)

(k2(1 + k2m/Λ2m)2 +M2)(q2(1 + q2m/Λ2m)2 +M2)

}
;

I4 = −8π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

∂

∂qµ
∂

∂qµ

{
1

k2(1 + k2m/Λ2m)q2(1 + q2m/Λ2m)

× 1

(q + k)2(1 + (q + k)2m/Λ2m)

}
.
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Two-loop β-function for N = 1 supersymmetric Yang-Mills
theory

The result for the two-loop β-function is given by

β(α) = −α
2

2π

(
3C2 − T (R)

)
+

α3

(2π)2

(
− 3C2

2 + T (R)C2 +

+
2
r
C(R)ijC(R)ji

)
−
α2C(R)ijλ∗jklλ

ikl

8π3r
+ . . . .

Comparing the result with the one-loop anomalous dimension

γi
j(α) = −αC(R)ij

π
+
λ∗iklλ

jkl

4π2
+ . . . ,

gives the exact NSVZ β-function in the considered approximation.

β(α) = −
α2
[
3C2 − T (R) + C(R)ijγji(α)/r

)]
2π(1− C2α/2π)

.

V.A.Novikov, M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229, (1983), 381;

Phys.Lett. 166B, (1985), 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277, (1986), 456.
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Conclusion

X It is possible to make analytical multiloop calculations for supersymmetric

theories with the higher covariant derivative regularization. In principle, it

is not very difficult to construct integrals defining different Green

functions.

X All integrals defining the β-function in N = 1 SQED, regularized by higher

derivatives, are integrals of double total derivatives. This allows to

calculate one of the loop integrals analytically.

X The factorization of integrands into total derivatives allows to obtain the

exact NSVZ β-function without redefinition of the coupling constant.

X Possibly, the factorization of integrands into double total derivatives is a

general feature of supersymmetric theories. At least, this takes place for a

general renormalizable N = 1 supersymmetric theory at the two-loop

level.
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Thank you for the attention!


