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Abstract. Most calculations of quantum corrections in supersymmetric theories are made
with the dimensional reduction, which is a modification of the dimensional regularization.
However, it is well known that the dimensional reduction is not self-consistent. A consistent
regularization, which does not break the supersymmetry, is the higher covariant derivative
regularization. However, the integrals obtained with this regularization can not be usually
calculated analytically. We discuss application of this regularization to the calculations in
supersymmetric theories. In particular, it is demonstrated that integrals defining the β-function
are possibly integrals of total derivatives. This feature allows to explain the origin of the
exact NSVZ β-function, relating the β-function with the anomalous dimensions of the matter
superfields. However, integrals for the anomalous dimension should be calculated numerically.

1. Introduction
In order to deal with divergent expressions in the quantum field theory, it is necessary
to regularize a theory. A proper choice of a regularization can simplify the calculations
or reveal some features of quantum corrections. Most calculations in the quantum field
theory were made with the dimensional regularization [1] in MS-scheme [2]. However, the
dimensional regularization breaks the supersymmetry and is not convenient for calculations in
supersymmetric theories. That is why most calculations in supersymmetric theories were made
with the dimensional reduction [3]. For example, the β-function in supersymmetric theories
was calculated up to the four-loop approximation [4, 5, 6, 7, 8]. After a special redefinition of
the coupling constant [9, 10] the result coincides with the exact NSVZ β-function, proposed in
[11, 12, 13, 14].

However, it is well known that the dimensional reduction is not self-consistent [15]. Removing
the inconsistencies one breaks the explicit supersymmetry [16, 17]. Then the supersymmetry
can be broken by quantum corrections in higher loops [18, 19, 20]. In the N = 2 SYM theory
this already occurs in the three-loop approximation [18, 20], while in the N = 4 SYM theory
the supersymmetry is not broken even in the four-loop approximation [21]. Thus, a problem of
regularization in supersymmetric theories is rather nontrivial [22].

For supersymmetric theories one can use the higher covariant derivative regularization,
proposed by A.A.Slavnov [23, 24]. Different versions of this regularization for supersymmetric
theories, which do not break the supersymmetry, were proposed in [25, 26]. Unlike the
dimensional reduction, the higher covariant derivative regularization is consistent. However, it
was not often applied to explicit calculations of quantum corrections, because the corresponding



integrals have very complicated structure, and it is not easy to calculate them analytically,
especially in higher loops. Moreover, some theoretical subtleties can raise nontrivial questions
even in the simplest calculations [27, 28, 29].

However, we argue that for supersymmetric theories this regularization has some very
attractive features and can be used for the calculations. Namely, the integrals defining the
β-function are integrals of double total derivatives [30, 31, 32, 33], and one of them can be
calculated analytically. As a result, the β-function is related with the anomalous dimension,
producing the exact NSVZ β-function without redefinition of the coupling constant. In this
paper we demonstrate how this can proved in N = 1 SQED in all loops and for the general
renormalizable N = 1 SYM in the two-loop approximation.

2. Quantum corrections in N=1 SQED, regularized by higher derivatives
2.1. Higher derivative regularization
The action of the massless N = 1 SQED in terms of superfields [34, 35] is written as

S =
1

4e2
Re

∫
d4x d2θ WaC

abWb +
1
4

∫
d4x d4θ

(
φ∗e2V φ + φ̃∗e−2V φ̃

)
. (1)

The theory is regularized by adding the term with the higher derivatives

SΛ =
1

4e2
Re

∫
d4x d2θ WaC

ab
(
R

( ∂2

Λ2

)
− 1

)
Wb, (2)

where R(0) = 1 and R(∞) = ∞. For example, it is possible to choose R = 1 + ∂2n/Λ2n. The
gauge is fixed by adding

Sgf = − 1
64e2

∫
d4x d4θ

(
V R

( ∂2

Λ2

)
D2D̄2V + V R

( ∂2

Λ2

)
D̄2D2V

)
. (3)

Then the propagator will contain large degrees of the momentum in the denominator, and all
loop diagrams beyond the one-loop approximation become convergent. The remaining one-loop
diagrams are regularized by inserting the Pauli–Villars determinants [36]

∏

I

( ∫
Dφ∗IDφIe

iSI

)−cI
(4)

into the generating functional, where

SI =
1
4

∫
d4x d4θ

(
φ∗Ie

2V φI + φ̃∗Ie
−2V φ̃I

)
+

(1
2

∫
d4x d4θ MIφI φ̃I + h.c.

)
(5)

and
∑

cI = 1,
∑

cIM
2
I = 0. It is important that the masses MI are proportional to the

parameter Λ.

2.2. Three-loop β-function
In order to find the β-function we consider

Γ(2)
V = − 1

16π

∫
d4p

(2π)4
d4θ V (−p) ∂2Π1/2V (p) d−1(α, µ/p) (6)

and calculate

d

d lnΛ

(
d−1(α0, Λ/p)− α−1

0

)∣∣∣
p=0

= − dα−1
0

d lnΛ
=

β(α0)
α2

0

. (7)



In the three-loop approximation the result can be written as (Rk ≡ R(k2/Λ2))

β(α0)
α2

0

= 2π
d

d lnΛ

∑

I

cI

∫
d4q

(2π)4
∂

∂qµ

∂

∂qµ

ln(q2 + M2)
q2

+ 4π
d

d lnΛ

∫
d4q

(2π)4
d4k

(2π)4
e2

k2R2
k

× ∂

∂qµ

∂

∂qµ

(
1

q2(k + q)2
−

∑

I

cI
1

(q2 + M2
I )((k + q)2 + M2

I )

)[
Rk

(
1 +

e2

4π2
ln

Λ
µ

)

−2e2

( ∫
d4t

(2π)4
1

t2(k + t)2
−

∑

J

cJ

∫
d4t

(2π)4
1

(t2 + M2
J )((k + t)2 + M2

J )

)]

+4π
d

d lnΛ

∫
d4q

(2π)4
d4k

(2π)4
d4l

(2π)4
e4

k2Rkl2Rl

∂

∂qµ

∂

∂qµ

{(
− 2k2

q2(q + k)2(q + l)2(q + k + l)2

+
2

q2(q + k)2(q + l)2

)
−

∑

I

cI

(
− 2(k2 + M2

I )
(q2 + M2

I )((q + k)2 + M2
I )((q + l)2 + M2

I )

1
((q + k + l)2 + M2

I )
+

2
(q2 + M2

I )((q + k)2 + M2
I )((q + l)2 + M2

I )
− 1

(q2 + M2
I )2

× 4M2
I

((q + k)2 + M2
I )((q + l)2 + M2

I )

)}
. (8)

From this expression we see that the β-function is defined by the integrals of (double) total
derivatives [30, 31, 32]. Such a structure allows to calculate one of the loop integrals analytically
and, thus, to reduce a number of integrations. This can be done using the identity

∫
d4q

(2π)4
∂

∂qµ

∂

∂qµ

(f(q2)
q2

)
= lim

ε→0

∫

Sε

dSµ

(2π)4
(−2)qµf(q2)

q4
=

1
4π2

f(0), (9)

where f is a nonsingular function which rapidly tends to 0 at the infinity. It is equivalent to the
identity

∫
d4q

(2π)4
1
q2

d

dq2
f(q2) =

1
16π2

(
f(∞)− f(0)

)
= − 1

16π2
f(0). (10)

(This is a total derivative in the four-dimensional spherical coordinates.) Taking the integrals in
equation (8) and comparing the result with the expression for the two-loop anomalous dimension
of the matter superfield

γ(α0) = −2e2
∫

d4k

(2π)4
d

d lnΛ
1

k4R2
k

[
Rk

(
1 +

e2

4π2
ln

Λ
µ

)
−

∫
d4t

(2π)4
2e2

t2(k + t)2
(11)

+
∑

I

cI

∫
d4t

(2π)4
2e2

(t2 + M2
I )((k + t)2 + M2

I )

]
−

∫
d4k

(2π)4
d4l

(2π)4
d

d lnΛ
4e4kµlµ

k4Rk l4Rl(k + l)2
,

in the considered approximation we obtain the exact NSVZ β-function for the N = 1 SQED
[14]:

β(α0) =
α2

0

π

(
1− γ(α0)

)
+ O(α5

0). (12)

This equality of the well-defined integrals is obtained without any redefinitions of the coupling
constant. Thus, with the higher derivative regularization the NSVZ scheme can be naturally



defined. However, it is much more complicated problem to calculate analytically the integrals
for the anomalous dimension. Possibly, in the lowest orders this can be done analytically, but it
seems that in higher loops for this purpose one should use numerical methods.

2.3. The exact result
For the N = 1 SQED it is possible to demonstrate that the features discussed in the previous
section take place in all loops. In particular, the integrals defining the β-function are integrals
of double total derivatives, and the β-function coincides with the NSVZ expression without a
redefinition of the coupling constant [37].

For this purpose, first, we make the substitution

V → θ̄aθ̄aθ
bθb ≡ θ4, (13)

which allows to extract the function d−1 in equation (6). Then we will try to present the sum of
Feynman diagrams as integrals of total derivatives, which in the coordinate representation are
given by

Tr
(
[xµ,Something]

)
= 0. (14)

We start with the expression for the part of the effective action corresponding to the two-point
Green function of the gauge superfield [37]

∆Γ(2)
V =

〈
− 2i

(
Tr(VJ0∗)

)2 − 2iTr(VJ0 ∗VJ0∗)− 2iTr(V2J0∗)
〉

+ terms with ∗̃+ (PV ), (15)

where

∗ ≡ 1
1− (e2V − 1)D̄2D2/16∂2

, ∗̃ =
1

1− (e−2V − 1)D̄2D2/16∂2
(16)

encode sequences of vertexes and propagators on the matter line, and J0 = e2V D̄2D2/16∂2 is
the effective vertex. (PV ) denotes contributions of the Pauli–Villars fields. The first term in
equation (15) is a sum of diagrams in which external lines are attached to different loops of the
matter superfields. The second term is a sum of diagrams in which external lines are attached
to a single line of the matter superfields. The last term is not transversal. The sum of such
terms vanishes due to the Ward identities.

After substitution (13) and some algebraic transformations [37] the first term in equation
(15) gives the contribution

−2i
d

d lnΛ

〈(
Tr

(
− 2θcθcθ̄

d[θ̄d, ln(∗)− ln(∗̃)] + iθ̄c(γν)c
dθd[y∗ν , ln(∗)− ln(∗̃)]

)
+ (PV )

)2〉
. (17)

Similarly, the second term in equation (15) gives

i
d

d lnΛ
Tr

〈
θ4

[
y∗µ,

[
(yµ)∗, ln(∗) + ln(∗̃)

]]〉
+ (PV )− terms with a δ-function. (18)

The third term in equation (15) vanishes after substitution (13). From expressions (17) and
(18) we see that in all orders the β-function is given by integrals of double total derivatives. A
different method to see this [31] is based on the covariant Feynman rules in the background field
method [38, 39].

Expressions (17) and (18) can be calculated explicitly in the three-loop approximation. The
result coincides with equation (8).



Terms with the δ-function in equation (18) appear due to the identity

[xµ,
∂µ

∂4
] = [−i

∂

∂pµ
,− ipµ

p4
] = −2π2δ4(pE) = −2π2iδ4(p). (19)

Due to this δ-function one of loop integrals can be calculated and a number of integrations is
reduced. Qualitatively, we consider all diagrams in which two external gauge lines are attached to
the same graph. Integration of the δ-function corresponds to cutting a matter line in this graph
[31]. This gives diagrams with two external matter lines, defining the anomalous dimension.
Thus, the β-function in a certain loop is reduced to the anomalous dimension in the previous
loop. These arguments can formulated rigorously [37] in all orders and allow to obtain the exact
NSVZ β-function

β(α) =
α2

π

(
1− γ(α)

)
. (20)

Note that deriving equation (20) one does not redefine the coupling constant, as in the case of
the dimensional reduction [9, 10]. Therefore, with the higher derivative regularization we can
naturally define the NSVZ scheme for the N = 1 SQED.

3. Two-loop β-function with the higher covariant derivative regularization in the
non-Abelian case
Let us consider a general renormalizable N = 1 supersymmetric Yang–Mills theory with a gauge
group G and matter superfields φi in a representation R, in the massless limit:

S =
1

2e2
Re tr

∫
d4x d2θ WaC

abWb +
1
4

∫
d4x d4θ (φ∗)i(e2V )i

jφj +

+

(
1
6

∫
d4x d2θ λijkφiφjφk + h.c.

)
(21)

This theory is invariant under the gauge transformation if

(TA)m
iλmjk + (TA)m

jλimk + (TA)m
kλijm = 0. (22)

Below we assume that this condition is satisfied. In order to introduce the higher covariant
derivative regularization and calculate the β-function in this case we will use the background
field method. In the supersymmetric case [34, 35] we split the gauge superfield (which is
below denoted by V ′) into the quantum part V and the background field Ω according to the
prescription e2V ′ ≡ eΩ+

e2V eΩ. Then the gauge can be fixed without breaking the background
gauge invariance:

Sgf = − 1
32e2

tr
∫

d4x d4θ
(
V D2D̄

2
V + V D̄

2
D2V

)
. (23)

(In our notation D, D̄, and Dα are the background covariant derivatives.) Certainly, the
gauge fixing procedure also requires introducing the Faddeev–Popov and Nielsen–Kallosh ghosts.
The higher covariant derivative regularization can be also introduced without breaking the
background gauge invariance. This can be done by different ways. For example, it is possible to
add



SΛ =
1

2e2
trRe

∫
d4x d4θ V

(D2
µ)n+1

Λ2n
V +

1
8

∫
d4x d4θ

(
(φ∗)i

[
eΩ+

e2V (D2
α)m

Λ2m
eΩ

]
i
jφj +

+(φ∗)i
[
eΩ+ (D2

α)m

Λ2m
e2V eΩ

]
i
jφj

)
(24)

to the action, assuming that n > m. (It is important that for a theory with a nontrivial cubic
superpotential a term with the higher covariant derivatives should be also introduced for the
matter superfields.)

As in the case of N = 1 SQED, the higher covariant derivative term does not remove
divergences in the one-loop approximation, and in order to regularize them the Pauli–Villars
determinants should be inserted into the generating functional. The Pauli–Villars fields should
be introduced for the matter superfields and all ghosts. (A contribution of the gauge superfields
in the one-loop approximation vanishes.) Masses of the Pauli–Villars superfields φI are
proportional to the parameter Λ: M ij

I = aij
I Λ and satisfy the relation M ij

I (M∗
I )jk = M2

I δi
k.

Using the background gauge invariance it is possible to choose Ω = Ω+ = V. Then the
function d−1 is defined by

Γ(2)
V = − 1

8π
tr

∫
d4p

(2π)4
d4θ V(−p) ∂2Π1/2V(p) d−1(α, λ, µ/p). (25)

In order to find the β-function we again use prescription (7) and find the derivative of d−1 with
respect to ln Λ in the limit of the vanishing external momentum. In the non-Abelian case the
result is given by

β(α, λ) = −3α2

2π
C2 + α2T (R)I0 + α3C2

2I1 +
α3

r
C(R)i

jC(R)j
iI2

+α3T (R)C2I3 + α2C(R)i
j
λ∗jklλ

ikl

4πr
I4 + . . . , (26)

where

tr (TATB) ≡ T (R) δAB; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB; r ≡ δAA. (27)

The integrals defining the β-function are given by

Ii = Ii(0)−
∑

I

cIIi(MI), i = 0, 2, 3, (28)

where for simplicity we do not write the ghost constributions (they are also given by integrals
of double total derivatives) and

I0(M) = −π

∫
d4q

(2π)4
d

d lnΛ
∂

∂qµ

∂

∂qµ

{
1
q2

ln
(
q2(1 + q2m/Λ2m)2 + M2

)}
; (29)

I1 = −12π2
∫

d4q

(2π)4
d4k

(2π)4
d

d lnΛ
∂

∂kµ

∂

∂kµ

{
1

k2(1 + k2n/Λ2n)q2(1 + q2n/Λ2n)(q + k)2



× 1
(1 + (q + k)2n/Λ2n)

}
; (30)

I2(M) = 2π2
∫

d4q

(2π)4
d4k

(2π)4
d

d lnΛ
∂

∂qµ

∂

∂qµ

{
(2 + (q + k)2m/Λ2m + q2m/Λ2m)2

k2(1 + k2n/Λ2n)

× (1 + q2m/Λ2m)(1 + (q + k)2m/Λ2m)(
q2(1 + q2m/Λ2m)2 + M2

)(
(q + k)2(1 + (q + k)2m/Λ2m)2 + M2

)
}

; (31)

I3(M) = 2π2
∫

d4q

(2π)4
d4k

(2π)4
d

d lnΛ
∂

∂qµ

∂

∂kµ

{
(2 + k2m/Λ2m + q2m/Λ2m)2

(k + q)2(1 + (q + k)2n/Λ2n)

× (1 + k2m/Λ2m)(1 + q2m/Λ2m)(
k2(1 + k2m/Λ2m)2 + M2

)(
q2(1 + q2m/Λ2m)2 + M2

)
}

; (32)

I4 = −8π2
∫

d4q

(2π)4
d4k

(2π)4
d

d lnΛ
∂

∂qµ

∂

∂qµ

{
1

k2(1 + k2m/Λ2m)q2(1 + q2m/Λ2m)(q + k)2

× 1
(1 + (q + k)2m/Λ2m)

}
. (33)

Thus, we see that the β-function is given by integrals of double total derivatives. In the
considered (two-loop) approximation they can be easily calculated analytically using equation
(9):

β = −α2

2π

(
3C2−T (R)

)
+

α3

(2π)2
(
−3C2

2+T (R)C2+
2
r
C(R)i

jC(R)j
i
)
−α2C(R)i

jλ∗jklλ
ikl

8π3r
+. . . (34)

This expression should be compared with the one-loop anomalous dimension

γi
j(α) = −αC(R)i

j

π
+

λ∗iklλ
jkl

4π2
+ . . . (35)

Then we see that in the considered approximation the β-function agrees with the exact NSVZ
β-function

β(α) = −
α2

[
3C2 − T (R) + C(R)i

jγj
i(α)/r

]

2π(1− C2α/2π)
. (36)

4. Conclusion
Although it is generally believed that the integrals appearing with the higher covariant derivative
regularization have too complicated structure, we see that in the supersymmetric case some of
them can be calculated analytically. This makes possible analytical multiloop calculations in
supersymmetric theories with this regularization. In principle, in the lowest loops it is not very
difficult to construct integrals corresponding to various Green functions.

A very attractive feature of the higher covariant derivative regularization is that all integrals
defining the β-function in the supersymmetric case seem to be integrals of double total
derivatives. As a consequnce, one of them can be calculated analytically. (For N = 1 SQED
this was proved exactly in all loops. For the general renormalizable N = 1 SYM theory this was



so far verified only in the two-loop approximation.) In both considered cases the factorization
of integrands into total derivatives allows to obtain the exact NSVZ β-function, and for N = 1
SQED for this purpose it is not necessary to redefine the coupling constant. (In the non-Abelian
case we cannot so far make this conclusion, because the calculation was made only in the two-
loop approximation, where the β-function is scheme-independent.)
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[17] Stöckinger D 2005 JHEP 0503 076
[18] Avdeev L V 1982 Phys.Lett. B 117 317
[19] Avdeev L V and Vladimirov A A 1983 Nucl.Phys. B 219 262
[20] Velizhanin V N 2009 Nucl.Phys. B 818 95
[21] Velizhanin V N 2011 Phys.Lett. B 696 560
[22] Jack I and Jones D R T 1997 Regularisation of supersymmetric theories (Preprint hep-ph/9707278)
[23] Slavnov A A 1971 Nucl.Phys. B 31 301
[24] Slavnov A A 1972 Theor.Math.Phys. 13 1064
[25] Krivoshchekov V K 1978 Theor.Math.Phys. 36 745
[26] West P 1986 Nucl.Phys. B 268 113
[27] Martin C and Ruiz Ruiz F 1995 Nucl.Phys. B 436 645
[28] Asorey M and Falceto F 1996 Phys.Rev. D 54 5290
[29] Bakeyev T and Slavnov A A 1996 Mod.Phys.Lett. A 11 1539
[30] Soloshenko A A and Stepanyantz K V 2004 Theor.Math.Phys. 140 1264
[31] Smilga A and Vainshtein A 2005 Nucl.Phys. B 704 445
[32] Stepanyantz K V 2005 Theor.Math.Phys. 142 29
[33] Pimenov A B, Shevtsova E S and Stepanyantz K V 2010 Phys.Lett. B 686 293
[34] West P 1986 Introduction to supersymmetry and supergravity (World Scientific)
[35] Buchbinder I L and Kuzenko S M 1998 Ideas and methods of supersymmetry and supergravity (Bristol and

Philadelphia, Institute of Physics Publishing)
[36] Faddeev L D and Slavnov A A 1990 Gauge fields, introduction to quantum theory (Benjamin Reading)
[37] Stepanyantz K V 2011 Nucl.Phys. B 852 71
[38] Grisaru M T and Zanon D 1985 Nucl.Phys. B 252 578
[39] Grisaru M T, Milewski B and Zanon D 1986 Nucl.Phys. B 266 589


