
1 / 19

Status of Parallelization of FORM

Takahiro Ueda (TTP KIT Karlsruhe)

ACAT2011 @ Brunel U.

Status of parallelization of FORM - T. Ueda (TTP KIT) 2 / 19

Introduction
● FORM is a program by J. Vermaseren for symbolic

manipulations of expressions consisting of a huge
number of terms (~TB).
● Now open source: http://www.nikhef.nl/~form/

● ParFORM and TFORM are parallelized versions of FORM.
● ParFORM: the Message Passing Interface (MPI).
● TFORM: the POSIX threads (Pthreads).

● NIKHEF Amsterdam: J. Kuipers, J. Vermaseren
● TTP Karlsurhe: J. Kühn, M. Steinhauser, T. Ueda

documents, forum, webCVS

http://www.nikhef.nl/~form/

Status of parallelization of FORM - T. Ueda (TTP KIT) 3 / 19

How FORM Works

Symbol a,b,x;
Local expr = a*x + x^2;

id x = a + b;

.sort

if (count(b,1) == 1)
multiply a/b;

Print;
.end

a*x + x^2

2*a^2 + 3*a*b + b^2

a^2 + a*b + a^2 + 2*a*b + b^2

5*a^2 + b^2

2*a^2 + 3*a^2 + b^2

1st m
o dule

2nd m
o dule

Status of parallelization of FORM - T. Ueda (TTP KIT) 4 / 19

$ form example.frm
FORM by J.Vermaseren 4.0Beta(Sep 1 2011) Run at: Sun Sep 4 23:52:55 2011
 Symbol a,b,x;
 Local expr = a*x + x^2;
 id x = a + b;
 .sort
Time = 0.00 sec Generated terms = 5
 expr Terms in output = 3
 Bytes used = 108
 if (count(b,1) == 1)
 multiply a/b;
 Print;
 .end
Time = 0.00 sec Generated terms = 3
 expr Terms in output = 2
 Bytes used = 64
 expr =
 b^2 + 5*a^2;
 0.00 sec out of 0.00 sec

Status of parallelization of FORM - T. Ueda (TTP KIT) 5 / 19

How FORM Works
● Each term in expressions is processed independently.

● No non-local operations are allowed.
● No common sub-expressions.

● Expressions as streams of terms.
● Sequential access to the disk storage.

● Expressions can
be bigger than
the memory available.

id a + b = x;
f(a+b)+g(2,a+b)

Sorting

Generating

Terms
...

Input

Output
Of course, faster disk is better.

Status of parallelization of FORM - T. Ueda (TTP KIT) 6 / 19

Concept of Parallelization of FORM

● The master distributes terms to workers (as chunks).

● Generating and sorting
in each worker.

● The master collects
results from the workers,
final sorting.

...

Output

Terms
...

Input

...

Sorting

Sorting Sorting

Worker 2

Generating Generating

Worker 1

Master

Master

Status of parallelization of FORM - T. Ueda (TTP KIT) 7 / 19

ParFORM

● Multiprocessor version of FORM.
● Communication via the Message Passing Interface (MPI).
● Can work on the computer cluster (w/ fast network).

Master

data

Worker

data

Worker

data

Worker

data

MPI MPI MPI

Independent
processes

Karlsruhe, 1998-

Status of parallelization of FORM - T. Ueda (TTP KIT) 8 / 19

TFORM

Master

data on
shared memory

Worker Worker Worker

thread

thread thread thread

One process

● Multithreaded version of FORM.
● Based on the POSIX threads (Pthreads).
● The master and workers share the memory.
● Performance gain on multicore processors

(shared memory machine).

● Shared memory space
allows the program structure
to be much simpler than
that in ParFORM.

 More features and tricks.

NIKHEF, 2005-

Load balancing, sortbots, ...

Status of parallelization of FORM - T. Ueda (TTP KIT) 9 / 19

ParFORM vs. TFORM

Speedup:

● Almost same scalability:

● Parallelizations are transparent to the users:
most of existing FORM programs can get a benefit
without any modifications!

Status of parallelization of FORM - T. Ueda (TTP KIT) 10 / 19

Parallel Versions of FORM in CVS
● ParFORM/TFORM sources are also available in

the FORM CVS repository. (http://www.nikhef.nl/~form/formcvs)

● Run as

$ wget http://goo.gl/fmyK3 -O formcvs.tar.gz
$ tar xzf formcvs.tar.gz
$ cd formcvs
$ autoreconf -i
$./configure --enable-parform
$ make

$ form myprogram.frm
$ tform -w8 myprogram.frm
$ mpirun -np 8 parform myprogram.frm

form, tform, parform in source subdirectory
(or you can “make install”)

http://www.nikhef.nl/~form/formcvs.php

11 / 19

FORM by J.Vermaseren 4.0Beta(Aug 31 2011) Run at: Wed Aug 31 19:27:00 2011
 *** example of the most critical step for 4-loop integrals
 *** calculations; from ic1m10n
 #define N "12"
 #message N='N'
~~~N=12

Time =    2112.66 sec    Generated terms =   37500000
               F37500001 Terms left      =        120
                         Bytes used      =       9056
Time =    2113.21 sec    Generated terms =   37600000
               F37600001 Terms left      =        121
                         Bytes used      =       9124
Time =    2116.06 sec    Generated terms =   37679070
               F37679070 Terms left      =        122
                         Bytes used      =       9192
Time =    2116.06 sec
               F         Terms active    =          2
                         Bytes used      =        160
Time =    2116.06 sec    Generated terms =   37679070
               F         Terms in output =          1
                         Bytes used      =         68
   F =
      54127938863093834679268025471156245105600000000/9*a10;
  2116.06 sec out of 2166.83 sec

...

$ form baicerN12.frm

Statistics for
intermediate sorting



12 / 19

TFORM by J.Vermaseren 4.0Beta(Aug 31 2011) Run at: Fri Sep  2 12:10:43 2011
    *** example of the most critical step for 4-loop integrals
    *** calculations; from ic1m10n
    #define N "12"
    #message N='N'
~~~N=12

 Thread 2 reporting
Time = 273.11 sec Generated terms = 4757636
 F Terms in thread = 1
 Bytes used = 76
 Thread 8 reporting
Time = 274.18 sec Generated terms = 4760668
 F37664911 Terms left = 74
 Bytes used = 5608
 Thread 8 reporting
Time = 274.18 sec
 F Terms active = 3
 Bytes used = 228
 Thread 8 reporting
Time = 274.18 sec Generated terms = 4760668
 F Terms in thread = 1
 Bytes used = 76
Time = 119.87 sec Generated terms = 37679070
 F Terms in output = 1
 Bytes used = 68
 F =
 54127938863093834679268025471156245105600000000/9*a10;
 119.87 sec + 2271.27 sec: 2391.15 sec out of 423.75 sec

...

$ tform -w8 baicerN12.frm

Statistics from workers can be
hidden by “Off ThreadStats;”.

Statistics for
intermediate sorting
on worker threads

13 / 19

ParFORM by J.Vermaseren 4.0Beta(Aug 31 2011) Run at: Fri Sep 2 12:17:53 2011
 *** example of the most critical step for 4-loop integrals
 *** calculations; from ic1m10n
 #define N "12"
 #message N='N'
~~~N=12

             Process 4 reporting
Time =     401.29 sec    Generated terms =    5362170
               F         Terms in process=          1
                         Bytes used      =         76
             Process 5 reporting
Time =     399.31 sec    Generated terms =    5390010
               F         Terms in process=          1
                         Bytes used      =         76
             Process 6 reporting
Time =     401.69 sec    Generated terms =    5374010
               F         Terms in process=          1
                         Bytes used      =         76
             Process 7 reporting
Time =     398.08 sec    Generated terms =    5342010
               F         Terms in process=          1
                         Bytes used      =         76
Time =     399.37 sec    Generated terms =   37679070
               F         Terms in output =          1
                         Bytes used      =         68
   F =
      54127938863093834679268025471156245105600000000/9*a10;
  399.37 sec out of 403.44 sec

...

$ mpirun -np 8 parform baicerN12.frm

Remark for old users:
To switch back to old ParFORM 
statistics, “On OldParallelStats;”.

Statistics for
intermediate sorting 
on worker processes

Statistics from workers can be 
hidden by “Off ProcessStats;”.



Status of parallelization of FORM  -  T. Ueda (TTP KIT)  14 / 19

Sorting
● The final sorting is always a bottleneck.

● The master should merge results of all workers.

Output
Final sorting

Results of workers

Master

1 2 3 4 5 6 7 8



Status of parallelization of FORM  -  T. Ueda (TTP KIT)  15 / 19

Sortbots (TFORM)
● Special threads (sortbots) merge each two results.

Output

Final sorting

Results of workers

Master

1 2 3 4 5 6 7 8

Sortbots

Sortbots Master All workers Real time
no 125.87 1733.26 225.43

yes 62.54 1914.57 175.22
Mellin N=10, 16 workers

cancellation



Status of parallelization of FORM  -  T. Ueda (TTP KIT)  16 / 19

Future Plans of FORM Parallelization
● On computer clusters built from multicore processors:

● Heavy network traffic to the master.

Master

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Node 1

Node 2

MPI

MPIHeavy network 
traffic

ParFORMCurrent



Status of parallelization of FORM  -  T. Ueda (TTP KIT)  17 / 19

Future Plans of FORM Parallelization
● On computer clusters built from multicore processors:

● Each node has its own master.
● Still MPI overheads in each node.

Master 1

Worker 1

Worker 2

Worker 3

Master 2

Worker 5

Worker 6

Worker 7

Principal

Node 1

Node 2

MPI

MPI

MPI

MPI

ParFORM (?)

cancellation

Worker 4

Worker 8



Status of parallelization of FORM  -  T. Ueda (TTP KIT)  18 / 19

Future Plans of FORM Parallelization
● On computer clusters built from multicore processors:

● Hybrid MPI/Pthreads parallelization.
● Avoid MPI overheads in each node.

Master 1

Worker 1

Worker 2

Worker 3

Worker 4

Master 2

Worker 5

Worker 6

Worker 7

Worker 8

Principal

Node 1

Node 2

MPI

MPI

Shared 
memory

Shared 
memory

ParFORM + TFORM !



Status of parallelization of FORM  -  T. Ueda (TTP KIT)  19 / 19

Conclusion
● ParFORM and TFORM:

● ParFORM: multiprocessor version (MPI).
● TFORM: multithreaded version (Pthreads), using shared 

memory model.
● Both ParFORM and TFORM can execute almost all FORM 

programs in parallel.
● Both versions are in the CVS.

● In future, ParFORM and TFORM will be combined to get 
advantages of each of the approaches.

http://www.nikhef.nl/~form/formcvs

http://www.nikhef.nl/~form/formcvs.php

