Status of Parallelization of FORM

Takahiro Ueda (TTP KIT Karlsruhe)

ACAT2011 @ Brunel U.

1/19

Introduction

FORM is a program by J. Vermaseren for symbolic
manipulations of expressions consisting of a huge
number of terms (~TB).

* Now open source: http://www.nikhef.nl/~form/
documents, forum, webCVS

ParFOrRM and TFORM are parallelized versions of FORM.

e ParFORM: the Message Passing Interface (MPI).
* TFORM: the POSIX threads (Pthreads).

NIKHEF Amsterdam: J. Kuipers, J. Vermaseren
TTP Karlsurhe: J. Kuhn, M. Steinhauser, T. Ueda

Status of parallelization of FORM - T. Ueda (TTP KIT) 2/19

http://www.nikhef.nl/~form/

How FORM Works

Symbol a,b,x; -
Local expr = a*x + x*2;

a*x + x”*2 |
id x = a + b; a"2 + a*b + a*2 + 2%a*b + br2 |
.sort \\\\\¥::;><:\\\V/// Y.
2*a*2 + 3*a*b + b*2 3
if (count(b,1l) == 1)

multiply a/b; 243”22 4+ 3%3~2 4 Db~2 >

Print; ////////
- e 5%*a’2 + b2 y

Status of parallelization of FORM - T. Ueda (TTP KIT)

s|npow is|

a|npow pugz

$ form example.frm

FORM by J.Vermaseren 4.0Beta(Sep 1 2011) Run at: Sun Sep 4 23:52:55 2011
Symbol a,b,x;
Local expr = a*x + x*2;

id x = a + b;

.sort
Time = 0.00 sec Generated terms = 5
expr Terms in output = 3
Bytes used = 108
if (count(b,l) == 1)
multiply a/b;
Print;
.end
Time = 0.00 sec Generated terms = 3
expr Terms in output = 2
Bytes used = 64
expr =

b*2 + 5%*a*2;

0.00 sec out of 0.00 sec

Status of parallelization of FORM - T. Ueda (TTP KIT) 4/19

How FORM Works

Each term in expressions is processed independently.

* No non-local operations are allowed. ¥ id a + b = x;
e No common sub-expressions. £ (atb) +g(2,atb)
Expressions as streams of terms.

* Sequential access to the disk storage.

Input Terms

e EXxpressions can
be bigger than
the memory available.

Of course, faster disk is better.
Status of parallelization of FORM - T. Ueda (TTP KIT) 5/19

Concept of Parallelization of FORM

The master distributes terms to workers (as chunks).

InpUt Master Terms

— 0O O@ @ -

Worker 1 l Worker 2 l

Generating and sortlng
In each worker.

The master collects
results from the workers, \ /
final sorting.

Master

Status of parallelization of FORM - T. Ueda (TTP KIT) 6/19

Pa rFORM Karlsruhe, 1998-

Multiprocessor version of FORM.
Communication via the Message Passing Interface (MP).
Can work on the computer cluster (w/ fast network).

Independent
processes

MPI MPI MPI

e N e v ™\ Ve ~N
data data data

N / N /) _)

Status of parallelization of FORM - T. Ueda (TTP KIT) 7119

TFORM NIKHEF, 2005-

Multithreaded version of FORM.
Based on the POSIX threads (Pthreads).
The master and workers share the memory.

Performance gain on multicore processors
(Shared memory maChlne) One process

N
thread

Shared memory space (

allows the program structure
to be much simpler than Shagzt?n‘;?nory
that in ParFORM

=—> More features and tricks

thread thread thread

Load balancing, sortbots, ..
Status of parallelization of FORM - T. Ueda (TTP KIT) 8/19

ParFORM vs. TFORM

Almost same scalability: BAICER N=12

5000
4500 -
4000 [
3500
3000
2500
%ggg i : : : ;
1000 |8yt : Epeedup tForm -
508 “c ""----.-_'_-E-_-_ ______ [I’EEdtllp pFI‘OI-nlI -0 -

Time (s)

S 10 15 20 25 30 S 10 15 20 25 30

Number of processors p Number of processors p

Speedup: S(p) = ')

T(p)
Parallelizations are transparent to the users:
most of existing FORM programs can get a benefit

without any modifications!
Status of parallelization of FORM - T. Ueda (TTP KIT) 9/19

Parallel Versions of FORM in CVS

ParFORM/TFORM sources are also available in
the FORM CVS repository. (http://www.nikhef.nl/~form/formcvs)

$ wget http://goo.gl/fmyK3 -0 formcvs.tar.gz
$ tar xzf formcvs.tar.gz
$ cd formcvs
$ autoreconf -i
$./configure --enable-parform
S make
—> form, tform, parform in source subdirectory
(or you can “make install”)
Run as

$ form myprogram.frm
$ tform -w8 myprogram.frm
$ mpirun -np 8 parform myprogram.frm

Status of parallelization of FORM - T. Ueda (TTP KIT) 10/19

http://www.nikhef.nl/~form/formcvs.php

FORM by J.Vermaseren 4.0Beta(Aug 31 2011) Run at: Wed Aug 31 19:27:00 2011
*** example of the most critical step for 4-loop integrals
*** calculations; from iclmlOn

#define N "12"

#message N='N' S form baicerN1l2.frm

~~~N=12
Time = 2112 .66 sec Generated terms = 37500000
F37500001 Terms left = 120
Bytes used = 9056
Time = 2113.21 sec Generated terms = 37600000
F37600001 Terms left = 121 Statlstlcs for
Bytes used = 9124 . . .
intermediate sorting
Time = 2116.06 sec Generated terms = 37679070
F37679070 Terms left = 122
Bytes used = 9192
Time = 2116.06 sec
F Terms active = 2
Bytes used = 160 )
Time = 2116.06 sec Generated terms = 37679070
F Terms in output = 1
Bytes used = 68
F -—

54127938863093834679268025471156245105600000000/9*al0;

2116.06 sec out of 2166.83 sec

11/19



TFORM by J.Vermaseren 4.0Beta(Aug 31 2011) Run at: Fri Sep 2 12:10:43 2011
*** example of the most critical step for 4-loop integrals

*** calculations;

#define N "12"
#message N='N'

from iclmlOn

S tform -w8 baicerNl2.frm

~~~N=12
Thread 2 reporting \
Time = 273.11 sec Generated terms = 4757636
F Terms in thread = 1
Bytes used = 76
Thread 8 reporting
Time = 274 .18 sec Generated terms = 4760668
F37664911 Terms left = 74
Bytes used = 5608
Thread 8 reporting
Time = 274 .18 sec
F Terms active = 3
Bytes used = 228
Thread 8 reporting
Time = 274 .18 sec Generated terms = 4760668
F Terms in thread = 1
Bytes used = 76 y
Time = 119.87 sec Generated terms = 37679070
F Terms in output = 1
Bytes used = 68
F =

119.87 sec + 2271.27 sec:

2391.15 sec out of 423.75 sec

Statistics for
intermediate sorting
on worker threads

Statistics from workers can be
hidden by “Off ThreadStats;”.

54127938863093834679268025471156245105600000000/9*al0;

12/19

ParFORM by J.Vermaseren 4.0Beta(Aug 31 2011) Run at: Fri Sep 2 12:17:53 2011

Time

Time

Time

Time

Time

F

#define N "12"
#message N='N'
~~~N=12

Process 4
401.29 sec
F

Process 5
399.31 sec
F

Process 6
401.69 sec
F

Process 7
398.08 sec
F

399.37 sec
F

from iclmlOn

*** example of the most critical step for 4-loop integrals
*** calculations;

$ mpirun -np 8 parform baicerN1l2.frm

reporting
Generated terms
Terms in process
Bytes used
reporting
Generated terms =
Terms in process
Bytes used
reporting
Generated terms
Terms in process
Bytes used
reporting
Generated terms
Terms in process
Bytes used

Generated terms
Terms in output
Bytes used

399.37 sec out of 403.44 sec

5362170
1
76

5390010
1
76

5374010
1
76

5342010
1

Statistics for
intermediate sorting
on worker processes

Statistics from workers can be
hidden by “Off ProcessStats;”

76 /

37679070
1

Remark for old users:

To switch back to old ParFORM

4127 46792 254711562451 “
5 938863093834679268025 56245105600000000/¢ Stat|St|CS On OIdParaIIeIStatS

13/19



Sorting

The final sorting is always a bottleneck.

* The master should merge results of all workers.

Results of workers

A\W/Z8

Final sorting — >
Master Output

Status of parallelization of FORM - T. Ueda (TTP KIT) 14 /19



Sortbots (TFORM)

Special threads (sortbots) merge each two results.

Results of workers

Sortbots

Sortbots Master All workers Real time
no 125.87 1733.26 225.43
yes 62.54 1914 .57 175.22

Mellin N=10, 16 workers

CanceHaUOn

Final sorting —* @

Master Output

Status of parallelization of FORM - T. Ueda (TTP KIT) 15/19



Future Plans of FORM Parallelization

On computer clusters built from multicore processors:

* Heavy network traffic to the master.

Current ParForwm

He avyn etwork ——

traffic

Status of parallelization of FORM - T. Ueda (TTP KIT)

MPI

Master

~ MPI

~— Node 1 —

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

o & K ¥ N A a

“— Node 2 —

16 /19



Future Plans of FORM Parallelization

On computer clusters built from multicore processors:

e Each node has its own master.
o Still MPI overheads in each node.

—Node 1 ~
Worker 1

ParForwm (?) Worker 2

A Master 1

Worker 3

MPI

Worker 4

/
\

Principal

Worker 5

INN{IPZANS

Worker 6

Worker 7

A

cancellation

Worker 8

“— Node 2 /
Status of parallelization of FORM - T. Ueda (TTP KIT) 17 /19




Future Plans of FORM Parallelization

On computer clusters built from multicore processors:

* Hybrid MPI/Pthreads parallelization.
e Avoid MPI overheads in each node.

—Node 1 ~
Shared Worker 1
memory
A Master 1
o Worker 3
MPI
Worker 4
Principal ~ -
P - ~
/ Worker 5
MPI
Worker 6
X Master 2 /
o Worker 7
Shared
memory Worker 8
“— Node 2 /

Status of parallelization of FORM - T. Ueda (TTP KIT) 18/19



Conclusion

ParFoOrRM and TFORM:

* ParForMm: multiprocessor version (MPI1).

 TFORM: multithreaded version (Pthreads), using shared
memory model.

Both ParFORM and TFORM can execute almost all FORM
programs in parallel.

Both versions are in the CVS.
http://www.nikhef.nl/~form/formcvs

In future, ParFORM and TFORM will be combined to get
advantages of each of the approaches.

Status of parallelization of FORM - T. Ueda (TTP KIT) 19/19


http://www.nikhef.nl/~form/formcvs.php

