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Calculation path

[Loop diagram calculation]
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Loop Integral
L-loop diagram with E external momenta p1,...pg:

Loop integral

- d?ly...d71
J(n):.](nl,,nN):/d@lldglL](n):/W
1 oDy

where Dy, ...,Dy are denominators of the diagram, and Dy 1,...,Dy are
some additionally chosen numerators.
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Loop Integral
L-loop diagram with E external momenta p1,...pg:

Loop integral

: d’1y...d71,
J(n):.](nl,,nN):/d@lld@lL](n): W
Dy

where Dy, ...,Dy are denominators of the diagram, and Dy 1,...,Dy are
some additionally chosen numerators.
Prerequisites Notation
All denominators and numerators linearly dependon | L, i<L
li - g; . Any product /; - g; can be expressed via Dy. ' pi-L, 1>L

v

The total number of denominators and numerators

N=L(L+1)/2+LE, N>M
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Integration-by-part identities

The integration-by-part identities arise due to the fact, that, in
dimensional regularization the integral of the total derivative is zero Tkachov
(1981), Chetyrkin and Tkachov (1981)

IBP identities IBP operators
/d% ..d?1;,0;j(n) =0 (IBP) | O;= 34 J
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Integration-by-part identities

The integration-by-part identities arise due to the fact, that, in

dimensional regularization the integral of the total derivative is zero Tkachov
(1981), Chetyrkin and Tkachov (1981)

IBP identities
/d@zl ..d?1;,0;j(n) =0 (IBP) | O;= 34

The Lorentz-invariance identities arise due to the fact that loop integrals
are scalar functions of the external momenta (Gehrmann and Remiddi 2000).

IBP operators J

LI identities Lorentz generators J

PiapaM* T =0 @n | M =y, p"a,
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Integration-by-part identities

The integration-by-part identities arise due to the fact, that, in

dimensional regularization the integral of the total derivative is zero Tkachov
(1981), Chetyrkin and Tkachov (1981)

IBP identities

/d@zl ...d?1,04j(n) =0 (IBP) | 0y = 34

The Lorentz-invariance identities arise due to the fact that loop integrals
are scalar functions of the external momenta (Gehrmann and Remiddi 2000).

LI identities

IBP operators J

Lorentz generators
PiupavM*Y I =0 @D | M*Y =¥, pla) J

Huge redundancy of IBP&LI identities. In particular, it can be shown that LI
identities are linear combinations of the IBP identities (Lee 2008).
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Calculation of master integrals

IBP reduction

Using several available methods we can reduce all loop

integrals emerging in our problem to a small set of master
integrals.
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Calculation of master integrals

IBP reduction

Using several available methods we can reduce all loop
integrals emerging in our problem to a small set of master
integrals.

Important fact

IBP reduction also gives methods of the indirect
calculation of the master integrals: differential and
difference equations.
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Calculation of master integrals

IBP reduction

Using several available methods we can reduce all loop
integrals emerging in our problem to a small set of master
integrals.

Important fact

IBP reduction also gives methods of the indirect
calculation of the master integrals: differential and
difference equations.

Reduction vs Calculation
@ Reduction to masters requires some algebraic methods.

@ Calculation of master integrals requires analytic methods.

R.N. Lee (BINP, Novosibirsk) DRA method ACAT 2011

6/27



Differential equations

Differentiating with respect to external parameter and performing IBP

reduction of the result, we obtain differential equation for a given master
integral(Kotikov 1991, Remiddi 1997).

Differential equation External parameter

_ 5 DE _ mass (Kotikov, 1991)
55 —fl@/tha). OB S=9 jcoriantof p, (Remiddi, 1997)

R.N. Lee (BINP, Novosibirsk)

DRA method ACAT 2011 7127



Differential equations

Differentiating with respect to external parameter and performing IBP
reduction of the result, we obtain differential equation for a given master
integral(Kotikov 1991, Remiddi 1997).

Differential equation External parameter
J 5 =5 _ mass (Kotikov, 1991)
55 —fl@/tha). OB S=9 jcoriantof p, (Remiddi, 1997)

@ Scaleless integrals are zero in dimensional regularization.

@ n-scale integrals (n > 2) can be investigated by the differential
equation method.
Initial conditions for the differential equation are put in the point where
the chosen parameter is expressed via the rest (or equal to 0,00) = The
problem is reduced to the calculation of integrals with n — 1 parameter.
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Differential equations

Differentiating with respect to external parameter and performing IBP
reduction of the result, we obtain differential equation for a given master
integral(Kotikov 1991, Remiddi 1997).

Differential equation External parameter

{ mass (Kotikov, 1991)

P
557 =f@)J+hia).  OE)| S=13 4 oriantof p, (Remiddi, 1997)

@ Scaleless integrals are zero in dimensional regularization.

@ n-scale integrals (n > 2) can be investigated by the differential
equation method.
Initial conditions for the differential equation are put in the point where
the chosen parameter is expressed via the rest (or equal to 0,00) = The
problem is reduced to the calculation of integrals with n — 1 parameter.

@ One-scale integrals have obvious dependence on this scale.
Differential equations cannot help.
Example: Massless propagator-type integrals, massive vacuum-type

integrals, onshell massless vertices, onshell massive propagator
ACAT 2011 7/27



Laporta’s difference equations

One-scale multiloop (L > 2) integrals:

Conventional approach: either direct calculation (by Mellin-Barnes
transformation) or by Laporta’s difference equations (Laporta 2000).
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Laporta’s difference equations

One-scale multiloop (L > 2) integrals:

Conventional approach: either direct calculation (by Mellin-Barnes
transformation) or by Laporta’s difference equations (Laporta 2000).

Derivation

Consider “generalized master” J(x) obtained from the original J(1) by rasing
one denominator to power x. Perform Laporta algorithm near J(x) in order to
find the recurrence relation of the form

ch J(x+k) = h(x) (LAE)

The left-hand side contains simpler integrals which are assumed to be known.

v
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Laporta’s difference equations

One-scale multiloop (L > 2) integrals:

Conventional approach: either direct calculation (by Mellin-Barnes
transformation) or by Laporta’s difference equations (Laporta 2000).

Derivation

Consider “generalized master” J(x) obtained from the original J(1) by rasing
one denominator to power x. Perform Laporta algorithm near J(x) in order to
find the recurrence relation of the form

ZCk J(x+k) = h(x) (LAE)

The left-hand side contains simpler integrals which are assumed to be known.

v

Solution
Factorial series or Laplace transform (Laporta 2000). Homogeneous part can
be fixed from large-x asymptotics.

4
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Laporta’s difference equations

Weak points
@ Order of difference equation can be high n ~ 10

@ Slow convergence of the factorial series at small x = Calculate at
sufficiently large x and then use recurrence to reach x = 1 = loss of
precision.

@ Does not work for all-massless cases.
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Laporta’s difference equations

Weak points
@ Order of difference equation can be high n ~ 10

@ Slow convergence of the factorial series at small x = Calculate at
sufficiently large x and then use recurrence to reach x = 1 = loss of
precision.

@ Does not work for all-massless cases.

Results

o Numerical and analytical ( using ps1q) results for four-loop massive
tadpoles (Laporta 2002, Schroder and Vuorinen 2003, 2005, Bejdakic
and Schroder 2006)

@ Numerical results for three-loop onshell massive operators. Numerical
and analytical results for three and four-loop onshell sunrise.(Laporta
2001, 2008)
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Dimensional recurrence relation

Another variant of difference equation for the master integrals: Dimensional
recurrence relation (Tarasov 1996).
Advantages

@ Small order of dimensional recurence. Topologies with only one master
—> first-order equation.

o Fast convergence. In many cases the convergence is exponential
= easy to obtain precise results and then use pslq.
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Dimensional recurrence relation

Another variant of difference equation for the master integrals: Dimensional
recurrence relation (Tarasov 1996).
Advantages

@ Small order of dimensional recurence. Topologies with only one master
—> first-order equation.

@ Fast convergence. In many cases the convergence is exponential
= easy to obtain precise results and then use pslq.

Why not to use?

The homogeneous part of the solution depends on several (or one) periodic
functions. Their determination appears to be extremely difficult!

Initial Tarasov’s idea to fix them from the large-Z asymptotics does not work
for multiloop integrals.
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Dimensional recurrence relation

Derivation from Baikov’s formula

Baikov’s approach (to reduction)

Pass from the integration over the loop momenta to the integration over
loop-momenta dependent scalar products (or the denominators &)

d@ll .. .dglL — dsudsu .. .dSL,L+E, Sij = li g

Master formula

/ d@ll . .d@lL B ‘uLTL.—LE/Z—L(L—l)/4
ml22p .. . DY T(2—-E-L+1)/2,....,(2—E)/2]
L L+Ed . [V(l],...lL,pl,...,pE)](giEiLil)/z
< [ \TT11 dss (T—E-D/2pm pymw
= [V(pl,,pE)] Dl “'DN
V(ql, .. ) = det{qiqj} = P(Dl, .. .DN)
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Operator representation
Let us introduce the operators, acting on the functions on Z":

Operators Ay, ...,Ay,B1,...,By

(Aocf)(”lw--anN):naf(”la---a”la+1a---7”N)a
S T e R N
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Operator representation

Let us introduce the operators, acting on the functions on Z":

Operators Ay, ...,Ay,B1,...,By

(Aef) (n1,...,nn) =ngf (n1,...,nq+1,...,nx5), Commutator
(Baf)(r“?)nN) :f(nl,---,na—17...,nN). [A(x,Bﬁ]ZSaB J

v

A and B well suited to sectors
For any polynomial P(A, B) the result of action

P(A,B)J(n) =Y CiJ(n;)

contains only integrals of the same and lower sectors as J(n).
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Dimensional recurrence relation

Derivation from Baikov’s formula

Lowering DRR

Separating one factor V (Iy,...1.,p1,...,pe) = P(Dy,.

J(@+2) ( ) _ (2H)L [V (pla ‘e apE)]il

n) = (P(Bl,...

(Z2—E—L+1),

..Dy)

,BN)J@)) (n).
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Dimensional recurrence relation

Derivation from Baikov’s formula

Lowering DRR

Separating one factor V (Iy,...1,p1,...,pe) = P(Di,...Dy)

—1

T+ (n) = Cw* [V (p1,---,pE)]

(P(Bl,...,BN)J(@)) (n).

(Z2—-E-L+1);
Raising DRR
Recognising total derivative in Jacobian
J772) (m) = u*det 28 J?) (n)
% lJZl,...L
R.N. Lee (BINP, Novosibirsk) DRA method ACAT 2011 13/27




Solution of dimensional recurrence relation
Dimensional recurrence relation
J77D =c(2)J9 +R(2),

If there is no other master integrals of the same topology, R(Z) contain only
integrals of the simpler topologies and is assumed to be known.
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Solution of dimensional recurrence relation
Dimensional recurrence relation
J77D =c(2)J9 +R(2),

If there is no other master integrals of the same topology, R(Z) contain only
integrals of the simpler topologies and is assumed to be known.

Solution

@ Determine summing factor £(Z) from the equation % =C(2)
Summing factor permits multiplication by periodic function.

y
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Solution of dimensional recurrence relation
Dimensional recurrence relation
J77D =c(2)J9 +R(2),

If there is no other master integrals of the same topology, R(Z) contain only
integrals of the simpler topologies and is assumed to be known.

Solution

@ Determine summing factor £(Z) from the equation % =C(2)
Summing factor permits multiplication by periodic function.
@ The general solution reads:

1 =3 (9) o)~ Y 5(2 - 2%—2)R(Z—20)),
k=0

where ®(z) = o(exp [iT2)) is arbitrary function to be fixed.
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Liouville&Mittag-Leffler’s theorems

Liouville&Mittag-Leffler’s theorems from complex analysis

Meromorphic function f(z) can be restored from its singular parts up to the
holomorphic function A(z). If f(z) is bounded at infinity,
h(z) is constant.
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Liouville&Mittag-Leffler’s theorems

Liouville&Mittag-Leffler’s theorems from complex analysis

Meromorphic function f(z) can be restored from its singular parts up to the
holomorphic function A(z). If f(z) is bounded at infinity,
h(z) is constant.

Idea.

We can fix @(z) by considering the analytical properties of J (7)., Let us
express @(z) from the general solution

oo

0(z)=2Z(2)J\ 9+ Y. £(2-2k—2)R(2 —2k),
k=0

Suppose that we know all singularities of £ (2)J () on some basic stripe
S={2,Re? € (d,d+2]} and know that X (2)J?) behaves well when
Im 2 — +eo. Then we can use Mittag-Leffler’s theorem to fix @ (z).

v
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Analytical properties from parametric representation

Parametric representation

If I is the number of internal lines of the integral, parametric representation
reads

[0 (x)) 7>
P (x)]Q(L-H) /2—1

D —T(-L2/2) [ dn1...du8 (1~ Ex)

P(x) > 0and Q(x) > 0 are determined in terms of trees and 2-trees of the
graph. Dependence on ¥ is explicit here.
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Analytical properties from parametric representation
Parametric representation

If I is the number of internal lines of the integral, parametric representation
reads

) 2L/~
J2) — r(I_L_@/Z)/dxl cedxrd (1= Yx;) [P[ig];](ul)/z—l

P(x) > 0 and Q(x) > 0 are determined in terms of trees and 2-trees of the
graph. Dependence on ¥ is explicit here.

Observations

o If the integral converges on the real interval & € (d,da], itis a
holomorphic function on the whole stripe {Z, Re Z € (d},d,|}.

@ When Im & — oo the integral can be estimated as

TP < const x e~ PIMZ1/4 |1y g|I~1/2-LRe(2)/2

R.N. Lee (BINP, Novosibirsk) DRA method
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Path of calculations

@ Make sure all master integrals in subtopologies are known. If it is not so,
start from calculating them.
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Path of calculations

@ Make sure all master integrals in subtopologies are known. If it is not so,
start from calculating them.

© Pass to a suitable master integral. It is convenient to choose a master
integral which is finite in some interval & € (d,d + 2). For this purpose,
e.g., increase powers of some massive propagators.
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Path of calculations

@ Make sure all master integrals in subtopologies are known. If it is not so,
start from calculating them.

© Pass to a suitable master integral. It is convenient to choose a master
integral which is finite in some interval & € (d,d + 2). For this purpose,
e.g., increase powers of some massive propagators.

© Construct dimensional recurrence relation for this master integral. Due
to step 1, the nonhomogeneous part of the recurrence relation is known.
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Path of calculations

@ Make sure all master integrals in subtopologies are known. If it is not so,
start from calculating them.

© Pass to a suitable master integral. It is convenient to choose a master
integral which is finite in some interval & € (d,d + 2). For this purpose,
e.g., increase powers of some massive propagators.

© Construct dimensional recurrence relation for this master integral. Due
to step 1, the nonhomogeneous part of the recurrence relation is known.

© Find a general solution of this recurrence relation depending on function
o (z).
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Path of calculations

@ Make sure all master integrals in subtopologies are known. If it is not so,
start from calculating them.

© Pass to a suitable master integral. It is convenient to choose a master
integral which is finite in some interval 2 € (d,d + 2). For this purpose,
e.g., increase powers of some massive propagators.

© Construct dimensional recurrence relation for this master integral. Due
to step 1, the nonhomogeneous part of the recurrence relation is known.

© Find a general solution of this recurrence relation depending on function
o (z).

© Fix the singularities of this function by analysing the analytical
properties of the master integrals and summing factor. The
convenient choices of summing factor and of basic stripe are at your
disposal.
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Path of calculations

@ Make sure all master integrals in subtopologies are known. If it is not so,
start from calculating them.

© Pass to a suitable master integral. It is convenient to choose a master
integral which is finite in some interval 2 € (d,d + 2). For this purpose,
e.g., increase powers of some massive propagators.

© Construct dimensional recurrence relation for this master integral. Due
to step 1, the nonhomogeneous part of the recurrence relation is known.

© Find a general solution of this recurrence relation depending on function
o (z).

© Fix the singularities of this function by analysing the analytical
properties of the master integrals and summing factor. The
convenient choices of summing factor and of basic stripe are at your
disposal.

@ If needed, fix the remaining constants by conventional methods.
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Comparison with MB

Resulting expressions both in DRA and MB methods are multiple sums.
Is there any advantage in DRA result?

DRA method MB representation

Geometric multiple sums of the form | Harmonic multiple sums of the form

fl(kl)fn(kn) Z"'Zf(kl""’k”)

00> k) -2k >0 ki ke

v
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Comparison with MB

Resulting expressions both in DRA and MB methods are multiple sums.
Is there any advantage in DRA result?

DRA method MB representation
Geometric multiple sums of the form | Harmonic multiple sums of the form
fl(kl)fn(kn) Z"'Zf(kl""’k”)
o>k 2+ 2k, 20 ky kn
Complexity scales linearly with n. Complexity scales exponentially.
do k=0..kpax do ki =0..kpax
do i=1..n ... //n-fold
Si = Si+Si—1fi (k) do k, =0..kpax
end do S=8+f(ki,...)
end do end do
return S, ) return S
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Example 1
Three-loop sunrise tadpole
21 42112
J(@):@_/ d?kd?1d? r
W72 [K2 4+ 1] [+ 1] [12 + 1] [(k+z+r)2+ 1]

u]
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Example 1

Three-loop sunrise tadpole

49 _ @ _/ d?kd?1d” r
W22 ][R+ 1] [+ 1] [(k+ 1)+ 1]

@ There is one master integral in subtopologies:

I = 08 ~I*(1-2/2)
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Example 1

Three-loop sunrise tadpole

49 _ @ _/ d?kd?1d” r
W22 ][R+ 1] [+ 1] [(k+ 1)+ 1]

@ There is one master integral in subtopologies:

I = 08 ~I*(1-2/2)

@ The integral J(?) is a holomorphic function in the stripe
S={2,Re 7 €]-2,0)} which can be deduced from its parametric
representation. It is easy to check that any Euclidean integral with all
lines massive is holomorphic in the whole half-plane Re & < 0.
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Example 1

Three-loop sunrise tadpole

@ / d7kd?1d” r
w222 4 1] [2+1][r2 +1] [(k+l+r)2+1]

@ There is one master integral in subtopologies:

12 = 08 =T%(1-2/2)

@ The integral J(?) is a holomorphic function in the stripe
S={2,Re 7 €[-2,0)} which can be deduced from its parametric
representation. It is easy to check that any Euclidean integral with all
lines massive is holomorphic in the whole half-plane Re & < 0.

@ Dimensional recurrence reads
S _ (32-10),(2 — 2)1(9) (112 -38)(7-2)°
128(2 —4) 64(2 —4)

R.N. Lee (BINP, Novosibirsk) DRA method ACAT 2011 19/27



Example 1

Three-loop sunrise tadpole
© We choose the summing factor as

-9 -
(%) = 47T (2-9)2)

r3/2-2/2)r(3-32/2)
The general solution has the form

S(NID — o+ Y 720, @:4-9-2(11_@—16)r4(1—_@/2)
@)1 w(z)+k§t( Vo M) = TEn—arG-372)
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Example 1

Three-loop sunrise tadpole
© We choose the summing factor as

47T (2-9/2)
'(3/2—2/2)T(3-32/2)

The general solution has the form

%(2) =

4=772(112 -16)T* (1 - 2/2)
r'(3/2—-2/2)T(3-32/2)

2(2)J" i P-2k), 1(2)=

@ BothX(2)JY) and ¥, 1 (2 — 2k) are holomorphic on § = the
function ®(z) is also holomorphic in the whole plane except, maybe
z=0.

Both £(2)J7) and Y7, 1(2 — 2k) grow slower than |z| 7' when
ImD — doo = the function ®(z) is constant!
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Example 1

Three-loop sunrise tadpole
© We choose the summing factor as

47T (2-9/2)
'(3/2—2/2)T(3-32/2)

The general solution has the form

%(2) =

4=772(112 -16)T* (1 - 2/2)
r'(3/2—-2/2)T(3-32/2)

@ BothX(2)JY) and ¥, 1 (2 — 2k) are holomorphic on § = the
function ®(z) is also holomorphic in the whole plane except, maybe
z=0.

Both £(2)J7) and Y7, 1(2 — 2k) grow slower than |z| 7' when
ImD — Foo = the function ®(z) is constant!
@ From J(© = 1 we obtain

2(2)J" i P-2k), 1(2)=

oo

0@ == Y 1(-20"= P 37:6

3/2
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Example 2

Demonstration in Mathematica

How does it work in practice?

u]
)]
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Some new results
Baikov&Chetyrkin’s MIs up to 12th t.w. (Lee, Smirnov and Smirnov 2011b)

'1 \\
SN e (o
bt ﬁ {f% - (10045 1022 +25¢6> - (210§5 110082 42508 + 308y — ﬁ)ﬁ (wsgg
N
11151 34403
52585 — 30083y + 125787 + 1564835 — 567¢5 + 162§2‘6>82 + (719343 U+ TQ + 193G s + 104305 +97200 6+ &

4079283
I 450G Lo 2 )b (4309200 284Sy - 17820+ T S misagy g+ asonogy g+ 0

1061648y
3

28748602 286 316935 6642
+516003 8 + —— S 5347 + S, 743‘7)s4+ (17848;%+75330;4§5+116970§3§5+

80757142 313421 2509185 17127

3 5, 3 SIS v ST 243'7 — 19643202 ¢5 + 15888405 G + 1411748, &7 + 1336043 Gs + 6824288, &y
17560877 13986207¢2 4863417 55755300 490491

- == Su —7836083Ca6 +36888§2_1_8)£5+ (80316§§§4+ o 8, = 5150 % S 0 SN

3397821 330988949
% 492592283 g + 7235868 Gg — T';“ — 5835848376 +3911288 1 8

— 143945687 {5 + 14894545 G +

23004592 32644190858, 4293338083
LGG+ 5t T

720896§4 3772008 1498208
- TG G - e G-

219440
Caboe+ 27

5302424496795 279408 2444290839 186272 6 7
—emsiz ' 7 5H&G7— -3 5118 )€ +0(€)

DRA method ACAT 2011

R.N. Lee (BINP, N

+6118842¢,

22/27



N / N
N ‘, (1-2¢) 10
N (1+3¢)3(1 +4¢) €

/

1829
- (60§5 +10¢3 +25¢6 +70§7> - (50g5 — 78083 + 15086 +3083 4 + > &

\L,

— 25608385 +46555 — 1080@,6) e+ (12055 604603 — 12586 +234083 8y + 757587 + 2977683 {5 — 53193¢s

45283
3

1225856+ %

— 264084 {5 + 100083 G — 58460C9 )s + (107045“32 +300¢ + 1813843 4 +

2443 ~ 1510937¢9
18

73 143960¢2
+21492003 {5 — 21567005 + 599405 6 -+~ — 288844485 + 132004366 f@

+6792038, +

4955830387 10389704
7 7

88260
+ - b7 )53 + (32112g3§4 + 14608887 + 9084723 G5 — 39529785 + 167994, 6

8380551¢2 L 2677050587 1084217950

28 28 56

1567351833 100223975¢;
2 16

1667
+ 14078483 — 3726084 &5 + 23370083 G + %049

+ 10986634 +

4631493¢3 7

24389958586
28 6

+390194£3 ¢5 — +48878644 57 — +3792685¢5 g — — 1136683826

4500256989

108534843
+ 20501052_13) et 4 (138859243 5 — 32424085 + 2112484 6 -+ % + 3547448485 + 140098043 Cg + s

1592991062 43860237(3¢;  54746115¢) 601515043 7
+ 367 _
7 7 7 7
2821800989¢ 69655404
2 9

256544080 254930897 714442631
2 - GO+ ’ CSC7Jr = 99

463352803 +

16554412
4563436403 C5 — #

28467331
+ % — 1120944883 {g + 535329328, §o —

— 1436680385 6 +28936728 1 5 —

42064920

7951810
— 424155253465 — L+

8438848486 +

[C16)

12873185340379¢), 3115920 4389122543,9 2077280 5
597024 Sa1g )€ +0( )

7 27 3

R.N. Lee (BINP, N DRA method ACAT 2011 23/27



a7

d \T\\
S (1-2¢)? 56 254:6 1614 )
R IR I S o) M L~ 2266 10767 _3 _ _
O e (e SI =TI B 2085 +4183 + 2L ) (30883 — 50 — 1238384+ 51487 +486243 L5
o
24451 44 1526
- %”V" + 1566c2,6>s+ (-924@;44 150027 + 686363 Cs — % 2322006+ =22 8 108tts + 4350,
2204883
+ %)s + (2352004355 % +85536026+ — 5 — 3636644 {s + 5569583 86 + % +22892¢,

134114322 38169698387 78150191y 500565837 5 (610403 4604118, )
- - : — 16041 161 - e 72
R = 5 =% )s +( 3 6041644 L5 + 161860¢3 &g o 30258
6003513703, 1285947902 134815227¢;, 7724781837 5, 280574047y, 1346777858 465479304
* 56 BT B 112 T 45360865 65 + 64 * 6 B 3
531941502 55472425 70562644
+ 130987883 &g — 2749211, 8o — 8775283p.6 — 148606g271,8>s4 + (91560532;4 + 5., 14 51508 5 &
7239597 1752 2741 2 1
- 2 5183674425 + 7333852545 & _ 1597650y, 1 § — 5 859 G+ 6 55943 & _ 2955652505 Go + 799009&59 fn
2982868105465901, 535038818487 142150835¢; 25832277 ) 157544998 311533051855
2388096 3 28 1729457638485 — S bbb+ 18
179201220583 & 1913502 10569889943.9 1275668
* Tw — 1085340038 6 — 22763684 L6 + ——— L2837 — 108 e <SR E £+0 (86)

No 6™ roots of unity, only MZVs!

R.N. Lee (BINP, N DRA method ACAT 2011 24/27



Summary

@ In < 2 year the DRA method has become an extremely practical tool

» Three-loop g — 2 master T C s Y R {j \J {}
integrals (Lee and Smirnov S S SN s
2011) 1 AR g/ o0

» Three-loop quark and gluon
form factors(Lee, Smirnov and
Smirnov 2010, Lee and Smirnov
2011).

S »'U vkv.\
Q(o(t «og- «q««q I

» Work on three-loop static quark
potential is in progress.

N

» Four-loop QED-type tadpoles
(Lee and Terekhov 2011).

|
I +

» Four-loop massless propagator
master integrals.(Lee, Smirnov
and Smirnov 2011a,b)
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Outlook

@ Making the evaluation program (SummerTime) public.

@ Automatization of the multi-master case.

@ Application to the multi-scale case.
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