

Making distributed ALICE analysis simple using the GRID

plug-in

A Gheata
1
, M Gheata

1,2

1
Europeean Organization for Nuclear Research (CERN) - Geneva, Switzerland

2
Institute for Space Sciences – Bucharest, Romania

E-mail: andrei.gheata@cern.ch

Abstract. We have developed an interface within the ALICE analysis framework that allows
transparent usage of the experiment's distributed resources. This analysis plug-in makes it

possible to configure back-end specific parameters from a single interface and to run with no

change the same custom user analysis in many computing environments, from local

workstations to PROOF clusters or GRID resources. The tool is used now extensively in the

ALICE collaboration for both end-user analysis and large scale productions.

1. The ALICE computing model and data analysis

At a rate of up to 1.25 GBytes/second data storage, the ALICE experiment has the biggest event size

(tens of MBytes for Pb-Pb events) among the LHC experiments. This justifies the specific choices
made for the ALICE computing model [1]. For scalability reasons, the reconstructed event summary

data (ESD) is “democratically” replicated on the available distributed disk storages. The size of the

data encouraged using a “pull” model in the ALICE GRID middleware, running jobs rather close to the
data than on fixed sites and making TIER 1 and TIER 2 centers equivalent as role played in the data

analysis chain. Moreover, the same resources are used for reconstruction, calibration and analysis

tasks. All these facts, combined with a very ambitious physics program, are creating quite challenging

scalability problems that had to be addressed by the analysis framework.

2. The analysis framework

The ALICE analysis framework was described in detail in a different paper [2]. In this section we just
give a short overview of the components that are relevant for the way distributed analysis is steered.

An ALICE analysis module is seen as an independent task that shares with others the main event loop

steered by the framework. In fact, the event loop mechanism is provided by the ROOT framework [3]
and the ALICE analysis manager is just a wrapper around the ROOT TSelector class. The advantage of

this choice is that our framework can use directly the ROOT built-in tools for looping tree entries,

including the formalism defined by the TSelector class [4] for the phases of data processing:

 Local initialization phase (corresponding to TSelector::Init) - allows initialization of the custom

data structures for the analysis task. This phase is typically used to configure the analysis
code.

 Remote initialization phase (corresponding to TSelector::SlaveBegin) – allows initializing the

custom output objects produced by the analysis task (like booking histograms)

 Event processing phase (corresponding to TSelector::Process) - allows executing the custom

task algorithm per event. This can be used as entry point for a specific user analysis

framework

 Merging phase – This applies for all systems that allow parallel computing, where the workers

produce only partial results that have to be merged. This phase is not directly defined by the

TSelector interface but has to be handled by the framework.

 Post-processing phase (corresponding to TSelector::Terminate - allows any post-processing

operation (like normalization, fitting) performed on the merged results

 The analysis manager adds a specific model on top of the event loop, requiring that the user

analysis follows the interface defined by a base analysis class (AliAnalysisTask). Using this interface,
all analysis tasks registered to the manager are sequentially called in the different stages of processing.

Analysis tasks are only allowed to communicate via output data, so that direct dependencies are

avoided. This allows running together practically any combination of user analysis algorithms, taking

profit from having the large-sized input data in memory. The analysis manager class acts here like a
locomotive for a train having many analysis task wagons, while the deployment of the code, the data

and merging services are provided.

Figure 1. The ALICE analysis framework. The central role is taken by the analysis manager that

steers the main event loop for a train of analysis tasks. The data services are provided via a base
event handler class and specific data handlers. The distributed analysis is implemented as a plug-

in that hides the complexity of the PROOF and GRID back-ends.

 The reconstructed events are made available for analysis as event summary data, which in
ALICE are rather large data structures containing information which is in many cases detector-specific.

The ESD files can be skimmed or specialized to more compact formats (AOD, mini-AOD) for more

specific analysis usage. The ALICE event model [5] derives from a base virtual class that makes the
analysis transparent to the existing specific event formats. The same applies at the level of tracks,

vertices or other structures. Similar approaches have been used by few other experiments (like STAR

and RHIC) in order to make it possible to use generic data handlers to dispatch data to many analysis

clients. The ALICE analysis framework [2] extended this concept in the sense that any analysis task

can become at its turn a data producer and dispatch this newly computed data to an arbitrary number

of clients. The train of tasks presented in figure 1 is just the trivial use case of the framework, which

can propagate not only the input event, but also analysis results in a this data-driven tree of tasks.

 One can include analysis wagons to an existing train (analysis manager) using custom ROOT
macros. This is done via a simple standard procedure which is now a mandatory condition to be

included in any train. The analysis trains were usually deployed using specific GRID or PROOF [6]

setups. To make this operation simple and fully transparent for the user code we developed the so
called GRID plug-in, described in detail in the following sections.

3. Distributed analysis in ALICE

There are two main use cases for distributed data analysis in ALICE. One can use dedicated PROOF
clusters [7] to process a reasonable amount of data (like few millions events) with a fast turn-around

cycle. This is quite useful to get to look into fresh new data, perform reconstruction and calibration

tests or develop preliminary analysis cuts. A PROOF analysis session looks very much like a local one
and uses the same analysis code. There are however specific settings that have to be made using the

TProof interface in ROOT for: connecting to the PROOF cluster, staging/using datasets and

configuring cluster parameters.
 Once a certain analysis needs to run over a big part or the totality of the ALICE data in a period,

it has to be deployed in the ALICE GRID. As described in the first section, distributed disk storage and

computing resources are used here according to a “democratic” model. The system that allows running

batch jobs on these resources is called AliEn (Alice Environment) [8]. It uses a specific job
description language (JDL) to define: the software libraries to be used, the user executable code, the

input data, the job splitting and other job parameters, together with the job output.

 In practice, a user had to go through several steps before being able to run his analysis on the
GRID: he/she needed to write the analysis code as an analysis task (as mentioned in the previous

section), test and debug the code on local data, write the JDL, create a data set within the AliEn shell

and copy all files required in the job input box. All this had to be done by keeping in sync the local

and GRID software versions, monitoring the jobs and resubmitting in case of errors. The whole
procedure (now obsolete) required a special training of rather qualified users. Gaining experience with

the system was critical for the success rate.

 A first step in making the system more user-friendly was the introduction of a web monitoring
interface based on Monalisa [9]. This provides web interfaces for browsing and uploading files in the

AliEn file catalog, monitoring the job status and user quotas, checking the job efficiency or inspecting

central productions.
 Efficiency is an important aspect for getting results out of a distributed system. The size of

ALICE events encourages the use of CPU intensive analysis, which can be done by using big trains of

analysis tasks, at the cost of extra (and sometimes limiting) memory requirements. Large productions

have to be prioritized with respect to single user analysis. The life cycle of a given analysis passes
through local and PROOF tests, fine tuning of cuts on the GRID, then entering when mature enough in

a central production train conducted by one of the ALICE physics working groups. The whole

procedure was not straightforward and required a certain effort and time to conclude, so development
of central services and tools to shorten it became a priority.

4. The AliEn plug-in
To hide the complexity of the AliEn system from the user we have developed a utility class to describe

in a general way the requirements of a given analysis job. The idea was to provide an API to allow

defining in a simple key-value manner all the settings that are specific to the GRID job like: time to

live (TTL), software versions, dataset splitting or run numbers to be processed. Based on these settings
we can automatically generate and upload the needed datasets, JDL and analysis files. The system

supports loading existing AliRoot [10] libraries or compiling the analysis code on the fly. Using the

GRID plug-in makes the analysis session look exactly like a local one, the only addition coming from

the few extra plug-in configuration settings.

 The implementation of this tool is based on the TGrid interface available in ROOT. This is

specialized for the AliEn GRID via the TAlien class which allows executing shell commands in a
programmatic way. This makes it possible to copy files directly to and from the AliEn file catalog,

create datasets and most importantly, submit jobs and inspect their status. In practice, one has to

connect in a plug-in fashion the utility AliAnalysisAlien to the analysis manager (as in figure 1). The
way to configure it is straightforward and will be described in the next section. We wanted to provide

a minimum amount of mandatory configuration settings (like software version and run numbers to be

processed), while all the expert settings have default values.

 While in a local session, the AliEn plug-in inserts into the analysis manager initialization stage
without any change in the user calling sequence. The manager just detects its presence and delegates

all GRID-specific tasks to it. To make the local analysis run on the GRID, the plug-in performs the

following tasks:

 Connect to the GRID via the TGrid::Connect(“alien:”). This uses the existing user token and is

a mandatory step for being able to communicate with the AliEn system;

 Create the remote user working and output directories to hold the initial files and the future job

output. A check for the possibility to copy files is performed by default at this stage;

 Check the availability of the requested input data and produce a dataset via the AliEn “find”

command. The created dataset is checked to contain at least one entry and then copied to the
GRID workspace.

 Write the initialized analysis manager from memory to a file, then copy it on grid storage

 Generate a steering analysis macro that is able to extract the analysis manager from file and

launch a local analysis on a subset of the input data provided by the splitting procedure in

AliEn. This macro is also copied in the input box and will be used to run the analysis on the

remote batch nodes.

 Generate a ROOT macro to merge the outputs of the analysis jobs. This is an important step in

distributed data analysis that otherwise has to be done separately.

 Generate validation scripts for both the analysis and merging jobs. These check after the job

completion the presence of all the output files declared by the tasks connected to the manager.

They also check the presence of a special end-of-job file marker named outputs_valid
produced by the analysis manager in case of successful processing.

 Finally generate and upload the JDL’s corresponding to the analysis and merging jobs. These

keep the whole setup coherent and incorporate all the user-defined or default GRID

configuration settings
 An important part of this automatic procedure is the fact that all errors cause a well-documented

execution abortion to prevent starting invalid code while on the GRID, which was very far from being

the case before putting in place the plug-in. Besides that, handling all the information from a single

point allows for a very powerful testing phase that was implemented in this tool from the very
beginning.

 Once the job input box and JDL are assembled as described above, the AliEn plug-in submits a

configurable number of master jobs and starts automatically an AliEn shell. Note that all this happens
from within the starting phase of a local analysis macro that hides completely the GRID API. The job

submission is done gradually in case several runs are to be processed, to avoid overloading the job

queue. Once the analysis jobs are submitted, the user has complete freedom to inspect the jobs status,
resubmit the ones failing due to recoverable grid errors or leave the session.

 An important feature of the plug-in is the ability to resume an interrupted session once a given

phase of processing is completed. This first happens when the user finds out that all sub-jobs are in a

final state and need to be merged. At this point the user needs to simply re-run his plug-in enabled
local analysis macro, marking the start of the termination phase. The different analysis phases are

described in the next section.

Figure 2. Merging scheme using the AliEn plug-in. The number of file per stage and the maximum

number of stages are configurable.

 After resuming the session, the tool first makes a new collection based on the output files
available in the job output directories. This collection is used as input for the merging jobs that are

subsequently submitted. We just mention here that merging is a specific phase in any distributed

analysis, being a very complex problem in itself and subject to scalability issues. Merging is very
sensitive to grid problems like load on storage and temporary network glitches, but also to memory

limitations due to the type of the objects to be merged.

 The AliEn plug-in alleviates this issue by providing a multi-stage iterative merging procedure
that ends-up with a single file per master job (figure 2). The number of merging stages is configurable

and the user has full control on (re)starting the next merging stage. The intermediate merging stages

are run as independent grid jobs, taking as input a configurable fraction of the output files produced by

the previous stage (or the analysis jobs in case of the first merging stage). The final merging stage is
somewhat special since it runs as a single job, taking all previous outputs in one go. After performing

the merging, the Terminate() phase of the analysis manager is automatically executed (executing post-

processing analysis on the merged data) and the final merged files are copied to the grid output
directory.

5. Run modes and configuration
As described in the previous section, the AliEn plug-in defines default values for most JDL

parameters. These are however not always appropriate for a given analysis and need to be customized.

The most important ones are described in this section.

 The tool allows several different run modes to give a maximum of flexibility to the user

analysis. The run mode has to be set as string via the method SetRunMode() of the plug-in. The

supported run modes are described below:

 “full” – This mode is performing the full procedure described above, excluding the merging

phase. If GRID merging is disabled or the number of stages is set to 0, merging is however
executed locally. The plug-in makes a single collection over the job output files and starts a

local file merger. This feature is however discouraged for more than 100 outputs. While doing

local merging, the plug-in backs-up the last merged result so that in case of failure merging
can be resumed. In case merging is done locally, the post-processing Terminate() phase is also

executed locally.

 “offline” – This mode allows working with the plug-in without a GRID connection, skipping

most tests and generating only the needed files. This allows modifying the intermediate

analysis files or JDL’s. This kind of configuration can be error prone and is discouraged, but
in some cases it is very useful. Combined with the plug-in production mode it can be used for

example to configure production jobs to be run by a different user.

 “submit” – This is used in correlation with the offline mode to submit the customized analysis

files. It will first perform the remaining checks as in the full mode then it will submit the jobs

 “terminate” – This mode is used as trigger to pass to the next analysis phase. When the analysis

jobs are done, one needs to put the plug-in in this mode and rerun the local analysis macro to

start the merging phase. In case merging is done in stages, one needs to do the same to trigger

the start of the next merging stage. As rule of thumb, it is important that all the previous jobs
submitted by the plug-in are in a final state before running in this mode, otherwise the

corresponding outputs will not be used.

 “test” – This mode performs a very powerful local test using the exact same files that are to be

deployed and run on the GRID. The test first makes a collection over a configurable number

of files from the requested input dataset. This is used to access the input data remotely via
xrootd in the test session. The analysis is executed as on a GRID batch node and has to pass

before running the full mode. The test mode is a unique feature of this tool and helps a lot to

avoid most possible errors. Some of the features cannot be tested however, like the validity of
the JDL, which in this case is not generated. Users have to make sure that the local software

versions correspond to the ones that will be demanded on the GRID. To reproduce scalability

issues it is recommended to set the number of test files the same as the maximum job split
level. The test mode is available also in LOCAL or PROOF modes, as described in the next

section.

Table 1. Most relevant plug-in configuration settings

AliEn plug-in method Description

SetRunMode Sets the plug-in run mode as described above

SetProductionMode Produce files to be deployed and run by the

production manager.

SetROOTVersion

SetAliROOTVersion

SetAPIVersion

Set requested package versions.

SetGridDataDir
SetGridWorkingDir

SetGridOutputDir

Define the grid directories

AddRunNumber

SetRunRange
AddDataFile

SetDataPattern

Define run numbers to be processed or custom

collection files.

Set the pattern to be used for searching available

input files (e.g. *AliESDs.root)

SetAnalysisSource Source code in case of dynamic compilation

SetExecutable

SetAnalysisMacro

SetValidationScript
SetJDLName

Define custom names for the generated files

AddAdditionalLibrary

SetAdditionalLibs

Instruct the plug-in to load these libraries (in the

given order)

SetSplitMaxInputFileNumber Maximum number of files to be allocated to a
sub-job

SetDefaultOutputs

SetOutputFiles
SetOutputArchive

SetTerminateFiles

Output file names as defined by analysis tasks

Customize the output files
Define how the outputs should be archived

Extra files produced in the termination phase

SetMergeViaJDL

SetMergeExcludes

Enable merging as GRID job (default)

List of outputs to be ignored for merging

SetTTL

SetNtestFiles

SetMaxInitFailed

SetMasterResubmitThreshold

Time to live for sub-jobs

Number of files used by the test mode

Number of failed jobs to trigger abortion

Percentage threshold for automatic resubmission

6. Extension to local and PROOF modes

The plug-in has been recently upgraded to handle also the local and PROOF cases, so from the user
perspective the computing infrastructure becomes completely transparent. The usage is

straightforward, requiring the addition of few lines in the plug-in configuration. One just needs to have

the plug-in connected to the analysis manager and start the analysis in the desired mode via:

AliAnalysisManager::StartAnalysis(const char *mode). The supported modes are: “local”, “proof”
and of course “grid”. Table 2 presents the extra settings to be activated in case of PROOF.

Table 2. Plug-in configuration settings in PROOF mode

AliEn plug-in method Description

SetProofCluster Define the PROOF cluster to run the analysis

SetProofDataSet

Specify the dataset to be used. This has to be

available via gPROOF->ShowDatasets()

SetProofReset Reset the user session. Supported modes: 0-no
reset, 1-soft, 2-hard

SetNproofWorkers Limit the number of workers (faster initialization)

SetNproofWorkersPerSlave Define more than one worker per slave

SetRootVersionForProof Request a specific ROOT version

SetAliRootMode Load analysis libraries by default

SetClearPackages Clear existing packages

SetProofConnectGrid Connect to GRID on every worker

SetFileForTestMode Define a file name containing pointers to data
files stored locally, to be used for testing

 A remarkable feature is that the test mode implemented initially for the GRID case was

preserved also for the PROOF mode. This is activated in the same way, using the method
SetRunMode(“test”) for the plug-in. In this case the file for the test mode must be defined. The test

activates the PROOF-lite feature, which emulates a PROOF master on the local machine, using as

many slaves as CPU cores. The analysis code is tested on the requested data without any connection to

the PROOF cluster.

7. Future perspectives for organized analysis
The AliEn plug-in is just a simple utility that emerged from the need to make it easy for users to

deploy analysis on large GRID data sets. Its usage increased very fast as well as the number of

requests to support new features. This triggered several new developments and a tight integration with
the GRID monitoring system, such that the tool became a key component of the analysis framework.

A recent extension for PROOF support has made it even more useful, making all ALICE resources

transparent and easy to use.

 Besides end-user analysis, most central analysis productions are submitted based on this tool.
We are currently making an effort to extend the plug-in functionality aiming to ease-up automatic

generation and testing of custom analysis trains created via web forms. The idea is to provide tools

that will allow for train “conductors” from the different ALICE physics working groups to assemble
and manage trains using existing analysis modules from their group. This is now possible after

standardizing the procedure of inclusion of an analysis task, and the ALICE analysis libraries contain

already the analysis code in the necessary form. The gain in developing this new feature (already in an
advanced beta-testing phase) is not only from a management perspective but also from a job efficiency

one.

 The implementation of this new feature required defining a new object type which describes the

configuration needed to run a given analysis task. This is composed of:

 Location of the ROOT macro that adds the given task to an existing analysis manager. These

macros already exist in the AliRoot library, so their path is defined with respect to the base

installation location of this software.

 Required libraries to be loaded, in the right order.

 Supported input data types (ESD, AOD, MC). This is used to exclude incompatible analysis

modules from a given train.

 Dependency analysis modules. Some analysis tasks represent general-purpose utilities (like

centrality selection or physics selection) that are requested by most analysis modules even

though there is no direct dependency between them. The analysis plug-in makes sure that

dependencies are always included.

 Configuration for event handlers. Any train needs event handlers that may be differently

configured.

 This configuration can be imported from text files generated via the web forms. The

configuration objects are internally looped and the macros adding each wagon are being executed.

This finally creates the analysis train in memory and at this point a test can be generated by the plug-
in. The generated test can be run on a test machine by the train administrator, who gets a detailed

report on the CPU and memory footprint for EACH composing wagon. The idea is to create reference

data to follow the evolution of a given analysis task. All errors coming out of the tests are pointing
directly to the code to blame. The plug-in is also able to generate the final code to be run on the GRID,

if all tests succeed.

Acknowledgements
The tools described in this paper were mainly developed by the authors, but there are many other

people that contributed with ideas, developments or fixes. We would like to thank A. Morsch,

J.F.Grosse-Oetringhaus, M.Vala, C.Grigoras for their direct or indirect participation to the
development, together with all ALICE analysis users who were actively using this tool and giving their

feedback.

8. References

[1] Carminati F, Schutz Y for ALICE coll., ALICE computing model, CERN-LHCC-2004-038/G-

086

[2] Gheata A, ALICE analysis framework, PoS (ACAT08) 028

[3] http://root.cern.ch
[4] http://root.cern.ch/root/html/TSelector.html

[5] http://aliweb.cern.ch/secure/Offline/sites/aliweb.cern.ch.Offline/files/uploads/OfflineBible.pdf

[6] Ballintijn M, Roland G, Brun R and Rademakers F, The PROOF distributed parallel analysis
framework based on ROOT, Proc. Conf. for Computing in High-Energy and Nuclear Physics

(CHEP), La Jolla, California, 24-28 Mar 2003

[7] Grosse-Oetringhaus J F, The CERN analysis facility - A PROOF cluster for day-one physics

 analysis, JPCS 119 (2008) 072017
[8] Bagnasco S, Betev L, Buncic P, Carminati F, Cirstoiu C, Grigoras C, Hayrapetyan A,

 Harutyunyan A., Peters A.J., Saiz P., AliEn: ALICE environment on the GRID, Proc. Conf. for

 Computing in High-Energy and Nuclear Physics (CHEP), Victoria, Canada, 2-9 Sep 2007
[9] Legrand I C, Newman H B, Voicu R, Carstoiu C, Grigoras C, Toarta M, Dobre C, MONALISA:

An agent based, dynamic service system to monitor, control and optimize GRID based

applications, Proc. Conf. for Computing in High-Energy and Nuclear Physics (CHEP),
Interlaken, Switzerland 2004

[10] Carminati F., Buncic P., Hristov P., Morsch A., Rademakers F., Safarik K., The AliRoot

framework, status and perspectives, Proc. Conf. for Computing in High-Energy and Nuclear

Physics (CHEP), Interlaken, Switzerland 2004

