
New web form filling the
analysis trains
(thanks to Jan Fiete Grosse Oetrighaus & Costin Grigoras)

MAKING DISTRIBUTED ALICE ANALYSIS SIMPLE USING THE GRID PLUG-IN
Andrei Gheata1, Mihaela Gheata2

We have developed an interface within the ALICE analysis framework that

allows transparent usage of the experiment's distributed resources. This

analysis plug-in makes it possible to configure back-end specific parameters

from a single interface and to run with no change the same custom user

analysis in many computing environments, from local workstations to PROOF

clusters or GRID resources. The tool is used now extensively in the ALICE

collaboration for both end-user analysis and large scale productions.

1CERN, 2Institute for Space Sciences - Bucharest

TSelector
::SlaveBegin

TSelector
::Init

TSelector
::Process

TSelector
::Terminate

TSelector
::SlaveTerminate

WORKERLOCAL LOCAL

TSelector Event loop

Analysis modules in ALICE

All ALICE analysis modules (aka analysis tasks) follow a simple formalism built on top of the ROOT

TSelector:

• Local initialization phase (corresponding to TSelector::Init) - allows initialization of the custom

data structures for the analysis task. This phase is typically used to configure the analysis code

• Remote initialization phase (corresponding to TSelector::SlaveBegin) – allows initializing the

custom output objects produced by the analysis task (like booking histograms)

• Event loop user method (corresponding to TSelector::Process) – allows executing the custom task

algorithm per event. This can be used as entry point for a specific user analysis framework

• Post-processing of the analysis results (corresponding to TSelector::Terminate – allows any post-

processing operation (like normalization, fitting) on the merged results

MyAnalysisTask
::Init

MyAnalysisTask
::CreateOutput

Objects

MyAnalysisTask
::Exec

MyAnalysisTask
::FinishTask

Output

MyAnalysisTask
::Terminate

Analysis manager and trains

The ALICE analysis framework only requires that the user analysis follows

the formalism defined by the base analysis class (AliAnalysisTask). All the

data services, deployment and merging are provided. The analysis is

steered by a single manager class that acts like a locomotive for a train

of many analysis task wagons. This makes it possible to use common I/O

handlers for making available for everyone the current input event and to

write AOD events.

The analysis manager steers the main event loop via the TSelector

mechanism. Including a new analysis to an existing train (analysis

manager) is done using custom ROOT macros (so called AddTask

macros). Once an analysis train is assembled one needs to deploy it using

a specific GRID or PROOF setup. To make this operation fully transparent

for the user code we developed the so calledGRID plug-in.

Analysis manager

AlidNdEtaTask

AliAnalysisTask
ParticleCorrelations

AliAnalysisTask
Jets

AliAnalysisTask
Flow

Using distributed resources

ALICE uses a grid of about 85 sites that can run up to 35K jobs in parallel.

The management of all these resouces is done via the AliEn middleware.

AliEn is a full blast batch submission system having many features,

including a general ROOT API called TAlien. This can be used to

authenticate to the system and perform most commands from a ROOT

session. To submit jobs using AliEn, one needs to define a dataset as a

collection of files, a JDL file describing how the job should be run and how

to collect the output, an executable and a validation script. Handling all

these files can become quite difficult and error-prone, particularly when

complex trains of tasks need to be handled.

The second type of distributed resources used by ALICE for fast feedback

are PROOF clusters. These are lower scale farms that use smaller local

data sets to achieve a reasonable level of interactivity in handling data

quality assurance, calibration or fast data mining. The PROOF system is

embedded in ROOT and comes with its own specific API and

requirements that allow running analysis jobs.

http://alimonitor.cern.ch/map.jsp

The GRID plug-in

To hide the complexity of the AliEn system from the user we have started to develop a simple utility

class to describe in a more or less general way the requirements of a given analysis job. The idea

was to provide a very simple API to describe in a simple key-value manner all the settings that are

specific to the grid job like: time to live (TTL), software versions, data-set splitting or run numbers to

be processed. Based on this settings we can automatically generate and upload the needed

data-sets, JDL and analysis files. The system supports loading existing AliRoot libraries or compiling

the analysis code on the fly. Using the GRID plug-in makes the analysis session look very close to a

local one, the only difference coming from the few extra plug-in configuration settings.

The plug-in has been recently upgraded to handle also the local and PROOF cases, so from the

user perspective the computing infrastructure becomes completely transparent. The use of this

utility in ALICE is now such that it became a main component of the analysis framework. All central

analysis productions are submitted based on it. Currently we are developing a web interface that

will allow assembling analysis trains and generating test macros based on the analysis plug-in. This

will make a lot easier the management of complex setups and will automate central productions.

MyAnalysis.C

MyResults.root

MY MACHINE

StartAnalysis(“local”)

PROOF SETUP

TProof::Open(“user@lxb6046”)

gProof->UploadPackage(“pack.par”)

gProof->EnablePackage(“pack”)

....

StartAnalysis(“proof”)

+ +

AliEn SETUP

CREATE + CONFIGURE

GRID PLUGIN

StartAnalysis(“grid”)

Analysis
manager

AliAnalysis
Alien

#___
#Module.Begin CentralityTask
#Module.DataTypes ESD, MC
#Module.MacroName $ALICE_ROOT/ANALYSIS/macros/AddTaskCentrality.C
#Module.StartConfig
__R_ADDTASK__->SetPass(2);

#Module.EndConfig

#___
#Module.Begin PhiCorrelations
#Module.Libs EMCALUtils, JETAN, PWG4JetTasks
#Module.Deps PhysicsSelection, CentralityTask
#Module.DataTypes ESD, MC
#Module.MacroName $ALICE_ROOT/PWG4/macros/AddPhiCorrelations.C
#Module.MacroArgs kFALSE, kFALSE
#Module.StartConfig
__R_ADDTASK__->SelectCollisionCandidates(AliVEvent::kAnyINT);

#Module.EndConfig

#___
#Module.Begin PhysicsSelection
#Module.Libs CORRFW, TENDER, PWG1
#Module.DataTypes ESD, MC
#Module.MacroName
$ALICE_ROOT/ANALYSIS/macros/AddTaskPhysicsSelection.C
#Module.MacroArgs kFALSE

#___
…

Generated train.cfg
ExtractModulesFrom

// Global settings
plugin->SetROOTVersion(“v5-29-00e-1”);
plugin->SetAliRootVersion(“v4-21-29-AN”);
plugin->SetAdditionalLibs(“myLibrary.so");

// Grid settings
plugin->SetGridDataDir("/alice/data/2010/LHC10b");
plugin->SetDataPattern("*ESDs/pass2/*ESDs.root");
plugin->AddRunNumber(115514);
plugin->SetSplitMaxInputFileNumber(100);
plugin->SetTTL(30000);

// PROOF settings
plugin->SetProofCluster(proofcluster);
plugin->SetProofDataSet(proofdataset);
plugin->SetNproofWorkers(100);
plugin->SetProofConnectGrid(kFALSE);

Custom setups for
grid, proof

// Generated JDL
Jobtag= {comment: MyTrain};
Packages = { VO_ALICE@AliRoot::v4-21-29-AN,

VO_ALICE@ROOT::v5-29-00e-1};
…
// Generated execution/validation scripts and macros
myTrain.sh, myTrain.C, myTrain_validation.sh
aliroot myTrain.C
…
// Generated merging macro
myTrain_merging.C, myTrain_merging_validation.sh

// Local tests for each analysis wagon, run automatically before the
production is started

MyAnalysis.root

GRID

PROOF

LOCAL

LOCAL

M
er

gi
n

g
p

h
as

e

http://alimonitor.cern.ch/map.jsp
mailto:user@lxb6046
mailto:VO_ALICE@AliRoot::v4.21.29-AN
mailto:VO_ALICE@AliRoot::v4.21.29-AN
mailto:VO_ALICE@AliRoot::v4.21.29-AN
mailto:VO_ALICE@AliRoot::v4.21.29-AN
mailto:VO_ALICE@AliRoot::v4.21.29-AN
mailto:VO_ALICE@AliRoot::v4.21.29-AN
mailto:VO_ALICE@AliRoot::v4.21.29-AN
mailto:VO_ALICE@AliRoot::v4.21.29-AN
mailto:VO_ALICE@ROOT::v5.29.00e-1
mailto:VO_ALICE@ROOT::v5.29.00e-1
mailto:VO_ALICE@ROOT::v5.29.00e-1
mailto:VO_ALICE@ROOT::v5.29.00e-1
mailto:VO_ALICE@ROOT::v5.29.00e-1
mailto:VO_ALICE@ROOT::v5.29.00e-1
mailto:VO_ALICE@ROOT::v5.29.00e-1

