Efficient Pseudo-Random Number

Generation for Monte-Carlo
Simulations Using GPU

Siddhant Mohanty,Ajit Mohanty and
Federico Carminati

Random Number Generation

The future of high power computing is evolving
towards the efficient use of highly parallel
computing environment. The class of devices
that have been designhed having parallelism
features in mind is the Graphics Processing Unit
(GPU) which are highly parallel, multithreaded
computing devices. One application where the
use of massive parallelism comes instinctively is
Monte-Carlo simulations where a large number
of independent events have to be simulated. At
the core of the Monte-Carlo simulation lies the
random number generators.

We use NVIDIA Graphic card with compute
capability 1.3 or above which supports floating
point calculation and implement a random
number generator scheme which is fast and
efficient for GPU implementation. As a case
study, the method is applied for a correlated
2D Gaussian Sampling

Compute Capability: 2.0(suitable for double
precision)

Total Global Memory: 1609760768
Total Constant Memory: 65536
Multiprocessor count: 15

Shared memory per mp: 49152
Registers per mp: 32768

Threads in warp: 32

Maximum threads per block: 1024
Maximum number of blocks: 65535

Two important aspects of this
presentation

e Fast and efficient random number generation
on GPU.
 Multivariate correlated sampling using both

CPU and GPU.

For GPU Programming, the random
number generator should have:

Good statistical properties.

High computational speed.

Low memory use.

Large period.

Mersenne Twister

* |tis one of the most respected methods(used
in ROOT as class TRandom3).

* Has a large period of 2'>-7°7

* Very good statistical properties.

However it is not suitable for implementation
in the GPU as it has a large state that must be
updated serially. Each GPU thread must have

an individual state in global RAM and requires

multiple access per generator. The relatively
large number of computation per generated
number makes the generator too slow for
GPU programming except in cases where the
ultimate in quality is needed.

|

LCG(Linear Congruential Algorithm)

X ., =((aX, +C)Ymodm
where,
m =232
a= 1664525

c=1013904223UL

Here the mod operation is not explicitly
required due to the unsigned overflow.

Combined Tausworthe Generator

There are a number of related generators that
use much smaller vectors, of the order of two
to four words, and a correspondingly denser
matrix. An example of this kind of generator is
the combined Tausworthe generator, which
uses exclusive-or to combine the results of
two or more independent binary matrix
derived streams, providing a stream of longer
period and much better quality.

Tausworthe Generator

unsigned TausStep (unsigned &z)

{

unsigned b =(((z<<sl)"z)>>s2);
returnz=(((z& M)<<s3)"b);

}

Where s1,s2,5s3,M are all constants.

11

Combined Generator

float HybridTaus()

{

//combined period is LCM(p1,p2,p3,p4)

return 2.3283064364387e-10 * (//Periods
TausStep(seedl,13,19,12,4294967294UL) A //p1=2"31-1
TausStep(seed?2,2,25,4,4294967288UL) » //p2=2730-1
TausStep(seed3,3,11,17,4294967280UL) » //p3=2/28-1

LCGStep(seed4,1664525,1013904223UL) //p4=2"32

);
}

Hence, combined period = 27121.

Seed generation

 For the initial seed we use
unsigned seed(int idx)

{
return idx*1099087573UL;

}
Where idx is the thread index.

It is known as the quick and dirty LCG and the
sequence is random enough for the seed
generation.

Auto-Correlation

C, = (xlil-x,)(x[i+m]-x,)

It is carried out :
* Using CPU
 Using GPU(both CUDA and OpenCL)

15

Example :

f(fc, 3,-') — 8—[($—$o)2+(y—yo)2+@($ —&0) y—uo)]

We Sample using walker’s alias techniques which requires 4
random numbers per sample. The detail of the alias
implementation is beyond the scope of this presentation.

16

Plots for original and generated
distribution

Graph2D Graph2D

Left: Circles represent original points and squares are the generated points.
Right: Circles represent original points and continuous curve is for generated
points

{
2—_
X =N

pE][7] — 92[f][4]]
2 [2] [4]]

TABLE IL: The table for x* test(c?=10.0)

a ¥ INn=10K|x /N n=100K|yx" /N n=10°K
0.0 2.56E-3 1.78E-4 2.92E-5
1.0 3.77E-3 1.53E-3 1.45E-4
2.0 2.428-2 5.02E-3 451E-4
3.0 3.25E-1 4.24B-2 2.428-2

18

TABLE IIL: The table for co-variance test , N= 100K

o — Ts gt | o

T LY
0.0]1.985 (-3.32B-17| 1.977[-.0008
1.0|12579(-1.264 |2.560|-1.255
2.0|6.856(-5968 |[6.345(-5.07%

3.0116.30| -15.984 [16.31|-15.04

Time comparison for 10°events

TABLE IV: The comparison of execution time

CPU |GPU-CUDA |GPU-OpenCL
Kernel Bxec.|1.202 Sec| 53 14 sec 220 sec
Total time [1.402sec| 0.14 sec 0.146 sec

20

* We have implemented a hybrid generator which
is quite fast and efficient for GPU programming.

* Using this hybrid generator we have carried out
multivariate correlated Monte-Carlo sampling.

 The kernel execution in GPU is about 1000 times
faster as compared to CPU.

 The overall execution is only 10 times faster as
the memory copy operation from device to host
or vice-versa is extremely slow.

21

