Static Analysis on HEP
Software

Axel Naumann, CERN
ACAT 2011, Brunel



Overview

Static Analysis
Typical coding issues
Diagnosis

Conclusions



Static Analysis



Static versus Dynamic

® Dynamic analysis looks at runtime behavior,
e.g. valgrind, sees what does happen

® Static analysis looks at source code:
sees what could happen



Features

® Cross-function / module / developer

® Not test-driven

void receive() {
if (!m_Server->receive())
recover(m_Server);
logger(m _Server->Name(), “receive”);

¥

void recover(Server* S) {
cout << “ERROR!'\n”;
delete S;

¥




Features

® |ndependent of developers’ assumptions

void f(int* p) {
g(p);

void g(int* p) { %

*n = O -
if (p) *p = 12; P= 9

¥




Features

® Builds condition matrix, tracking depth
beyond human capabilities

void p(int flag) {
if (flag > 2) {

return;
}

int flagl = flag * 2;
if (flagl < 10) {

} else {
// Algorithm that a physicist
// worked on for two years




Features

® >4000 issues found in ROOT

® Some systematic, motivate systematic
remedies

char buf[1024];

strcpy(buf, getenv(“PATH”));




Features

® A humans brain always interprets what it
reads without seeing what is really written,
and that holds even when reading some
some shippet of regular text

IR ——— T——




Tools

® CERN uses proprietary, donated Coverity
® Free alternatives exist, e.g.:

® clang

® checkcpp

® cpplint



Analysis Time

20

15

|10

ALICE
ATLAS
CMS
LHCDb
ROOT



First Reports

-~ 8000
— 6000
High Impact
- Defects
— 4000
~ 2000

LHCA LHC C

ROOT



Typical Issues



Memory

Possible buffer overflows
Use after delete
Uninitialized values

Null pointer checks



Flow

Missing break

Undocumented intentionally missing break
Logic flaws: if (the impossible)

Misspelled conditions: if (a & b == ¢)

Code path issues: for / if / break giving e.g.
invalid array index



AP]

Called function deletes, caller surprised
Called function allocates, caller surprised
Called function expects pointer != 0

Function requires check of return value



Diagnosis



® C++ is too complex for us



Medication

® Simple, clear, documented API helps

® No pointers

® At least no bare pointers:
owning_pointer<THI|>

® Expect the unexpected: uneducated callers,
context out of your control (“reuse”



Long- lerm Treatment

® |n the end: nothing helps

® static analysis is an integral, irreplaceable
part of Q/A tool set



Conclusions

® C++ is too difficult (but python too slow)
® Coding is too difficult
® Need big brother watching your code:

® systematic testing

® commit-centric feedback (“your change™)

® automatic analysis, static and dynamic



