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Abstract. As cloud middleware and cloud providers have become more robust, various 
experiments with experience in Grid submission have begun to investigate the possibility of taking 
previously Grid-Enabled applications and making them compatible with Cloud Computing. 
Successful implementation will allow for dynamic scaling of the available hardware resources, 
providing access to peak-load handling capabilities and possibly resulting in lower costs to the 
experiment. Here we discuss current work within the CMS collaboration at the LHC to both perform 
computation on EC2, both for production and analysis use-cases. We also discuss break-even points 
between dedicated and cloud resources using real-world costs derived from a CMS site. 

1.  Introduction 
Large international scientific collaborations face significant computing challenges; multi-Petabyte data 
sets that require petaflops of computing as well as globally distributed users and computing resources. 
To meet those computing challenges, collaborations have invested heavily in dedicated computing 
resources. Such an approach requires the expense and careful management of floor space, power, and 
cooling, the use of grid technologies and high performance networks, and the implementation of 
highly developed strategies for data movement and placement. 

The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC), for example, 
processes several petabytes of data yearly, using approximately 45,000 cores purchased and 
maintained by the experiment and spread globally across the grid. Core usage is highly managed to 
insure that the highest priority experimental goals are met. There is some fluctuation in demand: the 
experiment doesn’t log data year-round and user demand has significant variation depending on the 
schedule of conferences. The experiment makes opportunistic use of shared resources such as those 
offered by various academic computing centers/collaborations. However, fixed operational costs and 
asset depreciation reduce the benefits and cost-effectiveness of increased hardware capacity when such 
hardware is not being used regularly. 

Recently, a proliferation of “computing as a utility” or “cloud computing” services have made 
available to users the ability to purchase CPU time at an hourly rate, with little to no financial 
commitment. Service providers are often established internet businesses, such as Google and Amazon, 
that have built extremely large compute server facilities, initially for their own purposes. Amazon’s 
Elastic Compute Cloud (EC2) is a commercial on-demand compute service where a user can rent 
virtual machines by the hour and merely pay the hourly rate plus bandwidth charges. The costs of 



 
 
 
 
 
 

housing, powering, cooling, maintaining, and managing this hardware is borne by the provider. A 
growing number of varied users are sourcing their short-term computing needs to EC2 and similar 
services, when it would otherwise be difficult, expensive and time-consuming to roll out more 
capacity for what may be a transient need [1]. 
Cloud computing resources free the user from the burden of housing, servicing, and managing 
expensive and sometimes unreliable equipment. They also allow the user to purchase only those 
compute cycles and bits of storage needed to fulfill their specific goals or mission. In principle these 
can be purchased just-in-time as needed. Economies of scale may lead to a lower support cost per unit 
of hardware, and these lower costs may be passed on to the user.  
    There are also potential disadvantages to cloud computing services. The provider must balance 
availability with inactivity – if it over buys hardware then it has increased its cost without recovery, 
and these costs must be passed on to the consumer. If it under-buys hardware, then an important user 
advantage, being able to get access to resources when needed, is compromised. Necessary profit 
margins required by a provider also increase cost of service. Economies of scale may not dramatically 
lower support costs, since large scale infrastructure increases management and maintenance 
complexity, as does the need to support a user base with broad requirements and usage patterns. 
Supporting infrastructure that has only one “user” (like a dedicated CMS site) is likely to be 
significantly easier to manage and less expensive. 
    We have investigated using EC2 to supplement or replace the compute capacity of CMS by renting 
out virtual machines and integrating them with a virtual site consisting of solely cloud resources. 

2.  Methodology 
We sought to provide tools and the framework for end users to integrate cloud resources to their 
workflows as seamlessly as possible. To do this, we created a virtual Compute Element (CE) and 
registered it with the Open Science Grid (OSG) and CMS. On the CE, we installed and configured a 
number of services required to accept jobs from the grid and submit them to the cloud. Standard 
GRAM, Condor, and Gridftp services were installed and client scripts were created to automate 
starting and stopping virtual machines (VMs) on EC2. Once the user creates their VMs, the VMs are 
programmed to bootstrap themselves and connect back to the Condor master located on the CE, 
allowing them to join the dynamic pool of VMs available to the CE. Then the user can submit jobs 
using the standard CMS analysis tools (such as CRAB) to the virtual site where the jobs would be 
scheduled to run within EC2. 

To lower the amount of maintenance required, we use the ready-built virtual machine provided by 
CERN (CernVM). Maintained by CERN, it has a virtual, distributed filesystem that stores the CMS 
software (CMSSW) installs. This allows us to decouple the release schedule for our VM slave from 
the release schedule for CMSSW. An additional advantage of CernVM is that it comes with all the 
necessary CMS-specific prerequisites installed, some of which aren't provided in base Redhat linux 
install. 

An important issue with this architecture is that by default, any user can submit jobs to the virtual 
site and have their jobs run another users’ VMs. In a shared-use environment, such as an academic 
cluster, there is an expectation of a sharing of resources. Under this architecture, users (or groups of 
users) are paying for their CPU time directly from Amazon and have an expectation to be able to 
utilize the resources they’ve paid for. 

Our solution to this issue is a combination of Condor logic and webpages that let the owner of the 
VM configure an Access Control List (ACL) of allowed users to run on their resources. Each job 
received from the grid by GRAM has its Distinguished Name (DN) attached to it. The DN is the 
identity of the user, verified cryptographically with a grid certificate signed by a certificate service (for 
example, DOEGrids or CERN Certification Authority). By using some scripts and custom Condor 
logic on the slaves, we are able to restrict jobs to only run on specific nodes, preventing use of others’ 
resources. 



 
 
 
 
 
 

Originally, we had intended to create a virtual Storage Element (SE) using the same ACL structure. 
However, in July 2011, Amazon changed their bandwidth pricing and made inbound transfers free of 
charge. Simultaneously, CMS rolled out xrootd to each of their larger sites. Xrootd is a remote file 
access protocol that lets applications access ROOT files over the Wide Area Network (WAN). Nearly 
100% of CMS’ datasets are available remotely through xrootd obviating the need to stage-in input 
datasets. A lot of work has been done in CMS to optimize this remote I/O, and it is reported that even 
transatlantic I/O (from Lincoln, NE, USA to CERN) only suffers a 10% performance hit. Given these 
advances, we decided to leave the SE as a possible future enhancement to this framework. 

Once caveat within CMS is that the various frameworks (such as CRAB for analysis or WMAgent 
for production) perform checks to verify that data is actually at a site’s SE before jobs can be sent to 
the CE. Since we’ve opted to not attach storage to our virtual SE, this site mapping would fail on the 
virtual CE. Fortunately, patches exist to relax this restriction, allowing jobs to run on CEs, even if the 
data isn’t there. The xrootd service is intended as a fallback; since WAN network links are relatively 
expensive, it's not efficient for the experiment to provide the functionality by default. For our testing, 
we patched our analysis tool to ignore data locality, enabling our jobs to be scheduled even if the 
requested data isn’t stored locally. 

To test our architecture, we ran jobs which would take data produced from the experiment, scan 
each event for certain characteristics, and write out a subset of each event to a different file if it 
matched. Each job was run on both EC2 and Vanderbilt and transferred their outputs to Fermilab. To 
isolate the performance of the xrootd infrastructure, we ran the jobs at Vanderbilt twice: once reading 
data locally and once reading data over the WAN from a different site using xrootd. At Amazon, the 
nodes were the “large” instance with 7.5GB of memory and 2 virtual cores.  At Vanderbilt, the nodes 
were typically 8 core Xeon processors clocked at 2.27GHz with 32GB of memory. 

3.  Results 
Once everything was configured, a number of EC2 instances were started and dummy CMSSW 

jobs were executed to pre-warm the CernVMFS caches.  Then, analysis jobs were executed at both 
EC2 and Vanderbilt. Conveniently, this approach left the client-side interface unchanged (except for 
the patches we applied), so we were able to use our standard performance measurements to compare 
the two sites. 

A direct comparison between running at EC2 and running with dedicated resources is difficult to 
replicate due to load on external resources such as storage elements and network links. Additionally, 
even on idealized resources, different workloads will demonstrate different performance due to 
differing read access patterns and amount of CPU time required. With those caveats, we observed a 
processing rate (in seconds/1000 events) of 288 at EC2, 265 at Vanderbilt using local storage, and 310 
at Vanderbilt using remote storage. This rate is calculated from the walltime of the jobs and doesn’t 
include time to stage the outputs back to Fermilab. The stage-out times were roughly comparable in all 
cases, possibly due to the small size of the outputs and the large overhead in setting up connections 
using the SRM protocol. 

4.  Costs 
An important consideration when evaluating cloud resources compared to dedicated resources is the 
costs involved. Since the pricing model is variable based on utilization, there is a natural break-even 
point when it would be more cost-effective to purchase dedicated hardware and vice-versa. Amazon 
has recently added more pricing structures ranging from a zero upfront cost/high hourly cost model to 
a high upfront cost/low hourly cost model. Clients can choose to purchase reserved instances for a 
period of one or three years which grants a lower hourly rate for those resources. The Vanderbilt site 
provides dedicated resources at a cost of $213.60 per core per year. This amortizes the purchase price 
of the hardware over three years, and includes all power, cooling, facilities, network bandwidth, and 
the costs of support, maintenance, and administration. The hardware includes the compute node and an 



 
 
 
 
 
 

appropriate share of the costs for internal cluster networking, racks, cluster system services, and 
shared disk space. 

By comparing the efficiencies of the two sites and applying the current prices, we can make a 
rough comparison between the cost-effectiveness of the two models. At $213.60 per core per year, 
Vanderbilt can perform this analysis at an approximate cost of $1.79 per 1 million events. Similarly, 
using on-demand instances, one can perform the same analysis using EC2 at an approximate cost of 
$13.60 per million events. However, with dedicated resources a year commitment is required and if 
they are utilized less than 14.5% throughout that year, it would be more cost-effective to simply 
purchase resources with EC2. This is a break-even point between the two approaches and is roughly 
the point where a user no longer would want to purchase dedicated hardware to handle bursts of 
demand. 

A user could save some money by purchasing reserved instances, but only at the price tier with the 
lowest up-front costs. The “medium” and “heavy” utilization reserved instances have up-front yearly 
and triennial costs which already exceed the cost of dedicated hardware even before additional hourly 
usage fees are incurred.  

Perhaps counter-intuitively, reserved instances make the break-even point worse. The break-even 
point between dedicated hardware and on-demand EC2 resources is at 1,200 hours/year, but the same 
break-even point between dedicated hardware and Amazon’s light reserved instances is less than 
300/hours year. Currently, this means that for the same amount of money, one could either purchase 
dedicated hardware for a year, use 1,200 hours of on-demand EC2 time, or less than 300 hours of 
reserved instance time. With reserved instances, the break-even point for EC2 drops to 3.5% for the 
one-year option and 5.5% for the three-year option. 

5.  Conclusions 
Scientific computing requires an enormous amount of compute resources. These resources have 
traditionally been provided by the scientific collaborations themselves, requiring a significant 
commitment in equipment, manpower and facilities. Additionally, many scientific collaborations have 
bursty resource requirements, often related to the operation of their experiment and the schedule of 
scientific conferences. This leads to either resources being under-utilized or incurred delays due to a 
lack of resources when demand increases. 

Cloud computing, or computing as a service, has potential to solve these problems. By allowing 
users and organizations to purchase compute time on-demand with little to no commitment, it is 
possible to meet rapidly changing demand without the financial commitment of purchasing hardware 
that will remain largely idle and unused. 

We used Amazon’s EC2 service to perform physics analyses with data from the CMS experiment. 
By registering a grid site and configuring a compute element, we were able to almost seamlessly 
integrate EC2 with the CMS’ analysis tools. We also created an ACL system to ensure that each 
virtual machine would only be used by authorized users. Through our tests, we show these resources 
are technically feasible but are not cost-effective unless the resources are going to be used less than 
14.5% per year. Any greater than that and dedicated hardware begins to become the more cost-
effective option. 
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