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Abstract. This paper describes P-BEAST, a highly scalable, highly available and durable
system for archiving monitoring information of the trigger and data acquisition (TDAQ) system
of the ATLAS experiment at CERN. Currently this consists of 20,000 applications running
on 2,400 interconnected computers but it is foreseen to grow further in the near future. P-
BEAST stores considerable amounts of monitoring information which would otherwise be lost.
Making this data accessible, facilitates long term analysis and faster debugging. The novelty of
this research consists of using a modern key-value storage technology (Cassandra) to satisfy
the massive time series data rates, �exibility and scalability requirements entailed by the
project. The loose schema allows the stored data to evolve seamlessly with the information
�owing within the Information Service. An architectural overview of P-BEAST is presented
alongside a discussion about the technologies considered as candidates for storing the data. The
arguments which ultimately lead to choosing Cassandra are explained. Measurements taken
during operation in production environment illustrate the data volume absorbed by the system
and techniques for reducing the required Cassandra storage space overhead.

1. Introduction

ATLAS is one of several experiments built along the Large Hadron Collider at CERN, Geneva.
Its aim is to measure particle production when protons collide at a very high center of mass
energy, thus mimicking the behavior of matter a few instants after the Big Bang. The detecting
techniques used for this purpose are very sophisticated and the amount of digitized data created
by the sensing elements requires a very large data acquisition system [1]. This consists of a few
tens of thousands of applications that operate on the physics data since the moment it leaves the
detector until it is archived on disk. All these applications publish their monitoring information
in a central repository called the ATLAS on-line Information Service [2].

The experiment is successfully taking data since the end of 2008 and the trigger and data
acquisition is now in production. Among the current development e�orts is the addition of easy
to use and intuitive tools to aid experts monitor di�erent components or subsystems. P-BEAST
is an example of such a tool. It archives monitoring data at unprecedented levels of granularity
giving experts access to detailed information about what happened in the system at a certain
point in the past.



1.1. Dataset and workload considerations

The Information Service (IS) represents the data source. It is important to analyse the behaviour
of this system in order to understand the information volumes it is capable of generating, the way
this data can be acquired and the dynamics of the data. IS consists of a con�gurable set of server
processes where most TDAQ applications publish histograms and state variables. Examples of
such variables are the total system memory used by a particular application or the number of
physics events processed by an event �lter application.

IS servers have two main types of clients: information providers and information receivers.
As already mentioned, the providers are applications running in the TDAQ infrastructure. They
can create new information objects in the IS repository or update existing ones. Receivers
can subscribe to get updates of the information objects. The communication between the IS
repository and information receivers/providers is implemented on top of CORBA [3].

Most TDAQ applications have several variables to publish. These are grouped in structures
called information objects. An information object is the main unit of information passed between
IS clients and servers. It has a unique name (based on the name of the source application), a �xed
set of �elds (one for each variable of the source application), a type and a microsecond precision
time stamp. When such a TDAQ application is started, it �rst registers its information objects
with a certain IS server. As the objects are updated, they are sent to the IS server. The rate at
which this occurs varies widely: some are regular and others are highly dependant on runtime
conditions thus exhibiting transient behavior with peaks of up to several tens of thousands of
information object updates per second. Another key aspect to point out is that all the �elds of
an information object are sent in every update regardless of whether they changed their value or
not. This leads to data duplication that has to be accounted for.

Currently the load of monitoring data from all 20,000 TDAQ applications is spread across
a total of around 230 IS servers, depending on con�guration. About half of them contain
histograms, which are already being archived via di�erent means. The remaining ones contain
the operational monitoring data, most of which is volatile. At present the focus lies on the
87 servers which are used by the central DAQ and Trigger systems, though an extension of the
archiving for sub-detector speci�c information could be envisaged in the future. The total number
of information objects published within these 87 servers is approximately 200,000. On average
there are 10 �elds in each object giving a total of 2,000,000 variables that need to be persisted
for long term access. These variables are of primitive types directly mapped to C++ basic types
(8,16,32,64 bit signed and unsigned integers; boolean; �oat; double; string) and arrays of those.

2. Requirements

The goal of the P-BEAST project is to design and implement a generic mechanism to store a
subset of operational monitoring data of the ATLAS TDAQ system into a suitable database and
provide an e�cient means for retrieving that data. The reason why this data should be persisted
is to allow the data �ow experts to analyze the quality of data taking a posteriori, accessing by
means of specialized dashboards, information that is stored in a permanent location.

2.1. Users

P-BEAST will be used by any system expert who wants to have a more holistic view of certain
interesting elements of the TDAQ data �ow that took place in the past (days, weeks, months,
years). Such functionality is useful for o� line analysis: to understand the behavior of di�erent
parts of the system, to make comparisons between data taking sessions of the ATLAS detector, to
investigate problems, to correlate data etc. This data can serve as evidence of system operation
in reports, presentations or papers.



2.2. Functional requirements

2.2.1. Insertion path P-BEAST has to take into account the structural evolution of the
data published within the Information Service. Since the information objects are completely
con�gurable they can change over time. A recent example is the implementation of a logical
subdivision of racks which lead to lots of changes in the information object names. The
addition/deletion of �elds of an information object, from one data taking session of ATLAS
to another, is also possible.

The operational data must be permanently persisted. Data up to several months has to be
readily available, while data older than that has to be moved to CERN's long term storage
system: CASTOR [4]. The stored information should not loose its granularity over time.

P-BEAST should be able to replicate/transfer data outside of the ATLAS enclosed network
where the data providers (IS servers) reside, in order to allow for accessibility.

2.2.2. Retrieval path The system needs to be able to handle random time based queries. Given
the names of the information objects and �elds together with a time interval, the requested data
(plus associated meta data) has to be returned in an e�cient manner. With this time series data
at hand, the client, which could for instance be a web dashboard [5], can correlate and aggregate
di�erent data streams prior to display.

3. System architecture

Figure 1 shows the architectural view of P-BEAST: insertion and retrieval parts are clearly
separated.

Figure 1: P-BEAST architecture.

3.1. The insertion part

Consists of multiple information gathering agents. These are completely independent and
con�gurable applications that perform identical tasks: gathering, processing (decomposing,
unmarshalling, �ltering) and database insertion. At start up, each of them makes an initial
subscription to a subset of IS servers, de�ned in their con�guration �le, and then waits to receive
information objects. Each individual �eld is converted to the appropriate type and passed to a
collection of �lters. These share a common interface which allows them to be plugged in (the
�lter class names are speci�ed in the con�guration �le) such that new �lter implementations can
be added without the need of modifying application code. Filters can be con�gured to target
individual �elds within a unique IS object or can have a broader reach.

Currently there are two �lter implementations employed. The default is discarding duplicates
generated by successive updates of information objects containing the same �eld value. This is a
characteristic of the Information Service that simply resends the entire information object even
if none of its constituents changed value since the last update. The second �lter implementation



applies smoothing to numerical values only. A certain �eld value is rejected if it is within a
prede�ned range from the last value inserted. This range is de�ned in terms of percentages.

Field values that are accepted by all con�gured �lters are placed in a batch. When the batch
reaches a certain size it is passed to a database access object that performs a batch insertion
into the database.

3.2. The retrieval part

Is based on a similar concept as the insertion part with multiple independent clients. Each
client will access the database through a common retrieval API. In the simplest scenario, the
functionality provided by the API can be used by a custom analysis application. More advanced
clients would receive HTTP requests (like the ones issued by the ADAM dashboard [5]) which
they would map to P-BEAST API calls. The data returned would be arranged in a client
speci�ed format (JSON, XML, CSV etc.).

4. Database platform considerations

Initially relational database technologies were considered as the storage platform for P-BEAST.
A simple exercise in mapping IS information to the relational model lead to the conclusion that
the �xed tables cannot provide the �exibility necessary to easily and e�ciently track information
object structure over long periods of time. In order for this to be attained, de-normalization has
to be employed. This technique places considerable burdens on maintenance. The complexity of
retrieval queries grows and performance decreases as the data set grows larger. Moreover, the
high rates of insertion are generally problematic for relational databases. The solution is scaling
up by using more powerful machines in terms of RAM and CPU. For extremely large datasets
this strategy becomes costly.

A whole range of alternatives were evaluated. Part of them belong to a technological trend
called NoSQL [6] (e.g. Cassandra [7][8], HBase [9], MongoDB [10]). This term brings together a
plethora of distributed structured storage systems that are very di�erent in implementation and
data models but which share a few common aspects like: �exible schema, horizontal scalability,
non-ACID [11] etc, which can bring an advantage to P-BEAST in terms of ease of development,
scalability and performance. Due to the abundance of solutions it was found that the fastest way
to choosing a �nal candidate for the storage component of P-BEAST was to �lter them against
a set of criteria: open source, good �t to the use case of P-BEAST, read/write performance,
community activity, ease of deployment and maintenance.

RRDTool [12], Graphite [13] and OpenTSDB [14] are speci�cally built for handling monitoring
time series data but were ruled out for their lack of generality (only support numerical values)
and loss of granularity. KDB [15] is a highly performing tool used for storing and processing
�nancial time series data. Unfortunately it is a commercial product and just the 32 bit version is
available openly with not much active development. HDF5 [16] is a �le system with a library that
provides functionality to access the �les. It has a rich data set that supports multidimensional
arrays but does not have any data management functionality. MongoDB is a document-oriented
storage system that provides very high schema �exibility. It can be used as a fast storage system
for analytics data but at the moment when it was evaluated it was not durable, meaning that
data could be potentially lost after a machine failure because it is initially cached in RAM. Also,
MongoDB performs really well only if the indexes �t entirely in memory. As the data size of IS
is large this was most likely going to cause di�culties and would entail scaling up.



(a) (b)

Figure 2: Update (write) latencies - from [17] p.9: a) Work load: 95% reads / 5% updates, b)
Work load: 50% reads / 50% updates.

In evaluating Cassandra and HBase it was found that the primary use case of Cassandra,
high availability and write performance with optimized queries for retrieving slices of values, is
a better match for P-BEAST than that of HBase which is more focused on real time queries and
performing computation across large data sets. The relative performance of the two is shown by
a study published by Yahoo! [17] containing benchmarks under di�erent load conditions. These
were obtained using their cloud serving benchmarking platform [17] which is available for free
and can be easily adapted to stress test any storage system.

Figure 2 shows the update (write) latency as a function of the load placed on each platform,
for two di�erent work loads: read intensive (95% of the operations are reads) and balanced (reads
and writes occur in the same proportion). The second workload is closer to the intended usage
of the platforms because the use case of P-BEAST entails writing for the majority of the time.
In the read intensive workload (�gure 2a) clearly HBase performs better but in the workload
with more writes (�gure 2b) even though HBase outperforms Cassandra's to start with, it proves
incapable of handling loads higher than 8,000 operations/sec. Cassandra's write latency remains
stable across higher loads. This is a desired feature to have in order to satisfy the potentially
growing loads generated by the ATLAS Information Service. For the read latency under the
same two workloads (�gure 3), Cassandra presents superior performance showing it is a better
�t for content retrieval.

(a) (b)

Figure 3: Read latencies - from [17] p.8: a) Work load: 95% reads / 5% updates, b) Work load:
50% reads / 50% updates.

The main reasons why Cassandra is in a better position than the others to become the platform
of choice are:

• Cassandra o�ers the best �t to the use cases of P-BEAST



� Lots of writes with signi�calntly less read operations
� Can absorb peaks in the write rates [18]
� Designed to handle a very high write load (thousands of operations per second) [19]
from multiple clients

• Easy to increase performance by just adding more machines (scales linearly with the number
of machines assuming that keys are randomly distributed which is the case in real data sets)

• Ease of deployment (facilitates the fast prototyping approach used for P-BEAST)

• Low maintenance requirements (important for the long term intended use)

Cassandra is a key value storage system that operates as a distributed hash map. Due to its
simple data model, it has a strong use case for storing large amounts of time series data (used by
Cloudkick [19] for monitoring cloud infrastructure). Each value inserted has to have an associated
key and a name. The key identi�es the row where the name value pair is placed. Each row stores
name-value pairs sorted by the name. This essentially provides two indexes for retrieving values:
an index on row keys and one on names inside a row. Data is distributed within a cluster of
nodes by applying MD5 function to the key. Each cluster node is assigned a particular range
of MD5 hash values. All the name value pairs of a particular row will be stored on the node
responsible for the range where that row key hashed to.

Cassandra was inspired from Amazon's Dynamo [20] where it got the distributed ring
arrangement and its high availability. Furthermore it borrowed the storage data model and
basic insertion and retrieval mechanisms from Google's Big Table [21]. It uses the SEDA [22]
architecture for multi threading which allows more control on the computation process. To
communicate with any Cassandra node there is an API on top of Apache's Thrift [23] protocol
which allows remote procedural calls and facilitates communication between applications written
in di�erent languages.

5. Results

(a) (b)

Figure 4: Insertion rates measured while runnning during ATLAS recording physics data: a)
Update transactions per second, b) Batch insertions per sec.

Deploying P-BEAST (with six gathering instances) in the TDAQ infrastructure while ATLAS
is recording physics events reveals the rates shown in �gure 4. The gathering agents are con�gured
with only the default duplicates �lter and send data to a three node Cassandra cluster (each
node has a 4 core processor, 4 GB of RAM and separate rotational disks for the commit log and
the data directories). Figure 4a represents a measurement of the total update transactions per
second received by all six P-BEAST gathering instances from the 87 IS servers of interest. An
update transaction corresponds to an information object being transferred over the network to
P-BEAST. The plot shows the irregular tra�c that the Information Service generates with an
average of 9,200 updates per second. This input load is transformed by �ltering and batching into



a load presented to Cassandra depicted in �gure 4b. On average 28.3 batches/sec are inserted.
With a measured average of 226KB of data per batch, the Cassandra cluster thus handles an
average of 6.4 MB/sec of input data.

The Cassandra meta data can have a signi�cant impact on the required storage space. The
storage space needed for the ATLAS partition during a test was estimated based on standard
formulas [24] for calculating Cassandra overhead for rows and name value pairs (essentially for
the native indexes o�ered, bloom �lters etc). The formulas described in table 1 were fed with
several statistics gathered during 15 minute tests: the total number of rows created during the
test (TNR), the total number of name value pairs inserted (TNC), the average number of name
value pairs per row (NC), the average sizes of row keys and of names (RKS).

Table 1: Cassandra storage space: 100 sec vs 1000 sec time bins.

Measurement 100 sec bins 1000 sec bins

Raw data inserted[Sum (size of name + size of value)] 1.5 GB 1.3 GB

Name value pairs overhead [TNC x 15] 287.9 MB 398.49 MB

Row header overhead [TNR x 23] 103.5 MB 51.93 MB

Row bloom �lter[TNR*(2 + (8 + ceiling((NC * 4 + 20) / 8))) ] 67.94 MB 42.2 MB

SSTable index[TNR * (10 + RKS)] 783.5 MB 386.5 MB

SSTable bloom �lter[(TNR * 15 + 20)/8] 8.4 MB 4.2 MB

Base Storage (BS) 2.7 GB 2.2 GB

Raw data inserted (% BS) 54% 60%

Column Overhead (% BS) 10% 18%

Row overhead (%BS) 4% 2%

SSTableOverhead (%BS) 29% 18%

These calculations were performed in order to test the impact of various Cassandra schema
parameters on the storage e�ciency. The schema employed uses Cassandra rows as time bins.
The time bins are implemented in the following manner: for each new �eld of an incoming
information object, a Cassandra row key is computed by concatenating the 8th (for 100 sec bins)
or 7th (for 1000 sec bins) most signi�cant digits of the object time stamp, to the object name
and the �eld name. The e�ect of computing the row keys in this way is that the value of a
certain �eld is inserted in the same row if two successive updates are received within the same
time bin, essentially stacking name value pairs in the same row.

By varying the length of the bins from 100 second to 1000 second, the number of rows is
reduced while the average number of name value pairs per row is increased. The results of
storage space estimation is depicted in table 1. The same test con�guration described earlier was
used to perform these tests. The �gures in the table clearly show that by enabling longer time
bins the row and SSTable3 overhead is reduced by almost half. This change also has a positive
e�ect on retrieval query performance because it improves data locality (the name-value pairs in
one row are always stored on the same machine in the cluster).

Despite metadata optimizations, the amount of raw data being stored is still high. In order to
further reduce the intake of information smoothing �lters are applied in addition to the default
one (duplicates �lter). Figure 5 shows the estimated base storage requirements using the same
techniques described before. The data rates are lower because the tests were performed on a more
limited infrastructure. The procedure adopted was to run the system, in the same con�guration
(6 P-BEAST gathering agents and 3 node Cassandra cluster), in 4 separate 12 minute tests.

3 An SSTable is the on disk data representation in Cassandra.



Figure 5: Estimated Cassandra storage space for di�erent degrees of smoothing.

Each test had increasingly restrictive smoothing applied, ranging from no smoothing to 20%
smothing. The e�ect of smoothing is to decrease the storage space up to 38%.

6. Conclusions

P-BEAST is a system that maintains an archive of operational monitoring data which would
otherwise be lost. Access to this history helps data �ow experts debug problems occurring
within the infrastructure and make analysis of past behavior.

The writing part of P-BEAST has been tested in the production environment. On-going
tests within the TDAQ infrastructure indicate that P-BEAST is capable of absorbing the load
produced by the 87 servers of interest of the ATLAS TDAQ Information Service, thanks to
the intermediate bu�ering and to Cassandra's extremely high write performance. The results
presented here show the data rates handled and the possible optimizations that can be performed
with respect to storage space occupancy. The raw input data rates can be further controlled by
applying smoothing. The smoothing factors are completely con�gurable which allow probing the
limits of relevancy of applying this kind of �ltering for di�erent sources of data in the future.

Further work will involve �nishing insertion tests/optimizations and the long term storage
space estimates. These will feed into the proposal for acquisition of new machines to deploy the
Cassandra cluster on. Retrieval performance measurements will follow as well as development of
the reading clients.
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