
A Persistent Back-End for the ATLAS Online Information

Service (P-BEAST)

1.Introduction 2.What is P-BEAST?

4.Results

ATLAS is the largest of several detectors built along the Large Hadron Collider at

CERN. Its aim is to measure particle production when protons collide at a very high

center of mass energy, thus reproducing the behavior of matter a few instants after

the Big Bang. The detecting techniques used for this purpose are very sophisticated

and the amount of digitized data created by the sensing elements requires a very

large trigger and data acquisition system (TDAQ
[1]

). This consists of approximately

30.000 applications running on 2000 interconnected computers.

There are several sub-systems responsible for facilitating information exchange

between these applications and for monitoring their health. One of these is called the

Information Service
[1]

 (IS). It consists of a multitude of server applications running on

dedicated machines. Any TDAQ application can be an IS client and can publish

information objects of various types or it can subscribe to receive information

objects from a specified source. The publishing rates vary widely and give a bursty

nature to the traffic that IS is capable of generating.

During normal operation the rates have relatively steady levels.

Peaks in the rates appear however when many applications

publish data at the same time. This can happen when the

state of the ATLAS infrastructure changes. For example,

during a starting transition a lot of applications come

alive and as soon as they do, they start publishing

information about themselves.

P-BEAST wants to offer persistency to a large part of the information published in IS, denoted by the term

“Operational Information”. IS already has a mechanism that buffers a certain amount of values in memory

but this is not sufficient for offline data analysis. What is needed is a system that stores the time series

data on disk such that it can be retrieved at any point by data flow experts who will visualize it with the

help of specialized dashboards. Such functionality is useful for:

■ understanding short/long term past behavior of different components of the ATLAS TDAQ

■ comparing between physics data taking sessions of the detector

■ investigating problems that occurred during a certain data taking session

The project has thus two major parts which are reflected in its architecture.

► The insertion path involves:

■ gathering the required information by subscribing to IS and receiving

callbacks whenever an information object is created or updated by the

source application

 ■ processing the information by applying configurable filters (smoothing,

duplicates) to reduce unnecessary storage of unimportant or repeating

values

 ■ preparing the accepted values for insertion in a database

 ► On the retrieval side, a programmatic API shall be offered to any

client application that wants to access the raw stored data.

 Enough metadata will be accessible in order for the clients to

 keep track of changes made in the structuring of IS information

 in time. A special type of client will be a driver that implements

a general retrieval protocol on top of HTTP. Supporting this

 will allow the data stored in P-BEAST to feed into a web

 based visualization tool that displays data from several

 different sources of information within the ATLAS TDAQ

(ADAM).

The database technology of choice is a key-value

distributed storage system called Cassandra. The

main reasons for adoption of this technology are:

► built to sustain massive insertion data rates

presented in an irregular fashion.

► within a top level logical partitioning of data (column

family) Cassandra is schemaless which means that the

stored data can follow the evolution of IS information objects

over time in a seamless fashion

► easy to scale horizontally and configure a cluster to balance the

load amongst its nodes

► data is arranged in rows of key-value pairs making it ideal to store time series

data (timestamp as key).

► lots of sources of information: the Apache project homepage
[2]

, the online

community or the books
[3][4]

 written about this technology

Contributors:

LEHMANN MIOTTO, Giovanna (CERN)

KOLOS, Serguei (University of California Irvine (US))

MAGNONI, Luca (CERN)

SOLOVIEV, Igor (University of California Irvine (US))

3.Why Cassandra?

References:
[1] ATLAS HLT/DAQ/DCS Group. (2003, Jul.), ATLAS high-level trigger, data acquisition and controls : Technical Design Report. CERN,
Sw [Online]. Available: http://cdsweb.cern.ch/record/616089

[2] The Apache Software Foundation. Apache Cassandra Home Page. [Online]. Viewed 2011 February. Available:

http://cassandra.apache.org/

[3] E. Hewitt, Cassandra: The Defi�nitive Guide, O'Reilly, ISBN: 978-1-449-39041-9

[4] E. Capriolo, Cassandra High Performance Cookbook, PACKT Publishing, ISBN: 978-1-849515-12-2

This research project has been supported by a Marie Curie Initial Training
Network Fellowship of the European Community’s & Seventh Framework
Programme under contract number (PITN-GA-2008-211801-ACEOLE) and by the
European Community's Seventh Framework Programme under the Grant
Agreement no 212114 (SLHC-PP)

Author:

SICOE, Alexandru Dan

(Marie Curie ACEOLE Fellow, CERN,

asicoe@cern.ch, tel: +41 2276 71113)

►Transactions per second (TPS) performed on each of the 5

P-BEAST instances used:

►Aggregate transactions per second (TPS) performed

on the 3 Cassandra nodes in the cluster:

► Cassandra storage space size:

5.Conclusions
► the results are a good indication that P-BEAST can sustain the data rate

generated by the ATLAS Online Information Service running within the TDAQ

infrastructure

►measurements of the update rates confirm the varied behavior of different classes

of IS servers with respect to the information rates they provide

►intermediate buffering in the P-BEAST gathering instances as well as Cassandra’s

insertion mechanism account for the spikes in the information rate

►the storage space required is significant due to the fact that the results shown

were taken with only the mildest form of filtering applied to the incoming data

(duplicates filtering). It is expected that further smoothing filters would further

reduce the amount of stored data

►further work entails more testing for refining the insertion path and tuning filtering

parameters, integration with TDAQ infrastructure and development of the retrieval

mechanism

	PBEAST_ACAT_Poster.vsd
	Page-1

