Can 'Go’ address the multicore issues of today

and the manycore problems of tomorrow 7

Sébastien Binet

2011-09-06

Sébastien Binet (LAL) 2011-09-06 1/27



Introduction

@ Moore's law ceased to provide the traditional single-threaded
performance increases

» clock-frequency wall of 2003
» still deliver increases in transistor density

@ multicore systems become the norm

@ need to “go parallel” to get scalability

Sébastien Binet (LAL) 2011-09-06



In a C++ world. . .

@ parallel programming in C++ is doable:
» C/C++ "locking + threads” (pthreads, WinThreads)
* excellent performance
* good generality
* relatively low productivity
» multi-threaded applications. ..
* hard to get right
* hard to keep right
* hard to keep efficient and optimized across releases
» multi-process applications. . .
* 3 la AthenaMP/GaudiMP (see Vahko's talk on Thu.)
* leverage fork+COW on GNU/Linux
* event-level based parallelism

Parallel programming in C++ is doable,
but no panacea

Sébastien Binet (LAL) 2011-09-06



In a C++ world. . .

@ in C++03, we have libraries to help with parallel programming
boost: :lambda

boost: :MPL

boost: :thread

Threading Building Blocks (TBB)

Concurrent Collections (CnC)

OpenMP

v vV VvV VY

vV v v

Sébastien Binet (LAL) 2011-09-06 4 / 27



In a C++11 world. . .

@ in C++11, we get:
» ) functions (and a new syntax to define them)
» std::thread,
» std: :future,
» std::promise

Helps taming the beast
. at the price of sprinkling templates everywhere...
. and complicating further a not so simple language...

Sébastien Binet (LAL) 2011-09-06



In a C++11 world. ..
yay! for C++11, but old problems are still there. .. I

@ build scalability

» templates

» headers system
» still no module system (WG21 - N2073)

* maybe in the next Technical Report 7

@ code distribution
» no CPAN like readily available infrastructure (and cross-platform)
for C++
» remember ROOT/B0OOT ? (CHEP-06)

Sébastien Binet (LAL) 2011-09-06 6 /27



Time for a new language 7

"Successful new languages build on existing languages
and where possible, support legacy software. C++ grew our
of C. java grew out of C++. To the programmer, they are
all one continuous family of C languages.” (T. Mattson)

@ notable exception (which confirms the rule): python

A
Can we have a language:

@ as easy as python,

@ as fast (or nearly as fast) as C/C++/FORTRAN,

@ with none of the deficiencies of C++,

@ and is multicore/manycore friendly ?

Sébastien Binet (LAL) 2011-09-06 7/27



Why not Go 7
golang.org

Sébastien Binet (LAL) 2011-09-06 8 /27


http://golang.org

Elements of go

@ obligatory hello world example...

package main
import "fmt"
func main() {
fmt .Println("Hello, World")

http://golang.org

Google

Sébastien Binet (LAL)

2011-09-06 9 /27



Elements of go - I

e founding fathers:
» Russ Cox, Robert Griesemer, lan Lance Taylor
» Rob Pike, Ken Thompson
@ concurrent, compiled
@ garbage collected
@ an open-source general programming language
°

best of both ‘worlds':
» feel of a dynamic language
* limited verbosity thanks to type inference system, map, slices
» safety of a static type system
» compiled down to machine language (so it is fast)
* goal is within 10% of C

object-oriented (but w/o classes), builtin reflection

first-class functions with closures
duck-typing a la python

Sébastien Binet (LAL) 2011-09-06



Go concurrent

goroutines

@ a function executing concurrently as other goroutines in the
same address space
@ starting a goroutine is done with the go keyword
» go myfct(argl, arg2)
@ growable stack

» lightweight threads
» starts with a few kB, grows (and shrinks) as needed

* now, also available in GCC 4.6 (thanks to the GCC-Go front-end)
» no stack overflow

Sébastien Binet (LAL) 2011-09-06 11/ 27



Go concurrent - |l

channels

@ provide (type safe) communication and synchronization

// create a channel of mytype

my_chan := make(chan mytype)

my_chan <- some_data // sending data
some_data = <- my_chan // recetving data

@ send and receive are atomic )

"Do not communicate by sharing memory; instead,
share memory by communicating”

2011-09-06 12 /27

Sébastien Binet (LAL)



concurrent - [l

package evtproc
import "gaudi/kernel"

// —--- evut state ——-—
type evtstate struct {
idx int

sc kernel.Error
data kernel.DataStore

}

// —-= eut processor ——-

type evtproc struct {
kernel.Service
algs [lkernel.IAlgorithm
nworkers int

}

func (self *evtproc)
NextEvent (evtmax int) kernel.Error {

if self.nworkers > 1 {
return self.mp_NextEvent (evtmax)
}

return self.seq_NextEvent (evtmax)

Sébastien Binet (



Go concurrent - IV

import "gaudi/kernel"

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {

// ... setup event server ...
in_queue, out_queue, quit :=|start_evt_server(self.nworkers
for i := 0; i < evtmax; i++ {
[InTqUete <= Hew_evtstate (1)
}
for evt := range out_queue {
if levt.sc.IsSuccess() {
n_fails++
}
n_processed++
if n_processed == evtmax {
quit <- true
close(out_queue)
break
}
}

if n_fails !'= 0 {
return kernel.StatusCode (1)

Sébastien Binet (LAL)



Go concurrent - V

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {

:= func(nworkers int) (in_evt_queue,

out_evt_queue chan *evtstate,
quit chan bool) {
in_evt_queue = make(chan *evtstate, nworkers)
out_evt_queue = make(chan *evtstate)
quit = make(chan bool)

IEO serve_evts(in_evt_sueue, out_evt_ﬁueue, Suit)l

return in_evt_queue, out_evt_queue, quit

}

V7

return kernel.StatusCode(0)

Sébastien Binet (



Go concurrent - VI

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {

:= func(evt *evtstate, out_queue chan *evtstate) {
self .MsgInfo("nextEvent[/v]...\n", evt.idx)
evt.sc = self.ExecuteEvent(evt)
out_queue <- evt

}
:= func(in_evt_queue, out_evt_queue chan *evtstate,

quit chan bool) {

for {
splect {
case ievt := <-in_evt_queue:
go handle(ievt, out_evt_queue)
case <-quit:
return
+
}
}
/7

return kernel.StatusCode(0)

Sébastien Binet (



Go concurrent - VII

main-goroutine

goroutine #1

start_evt_server

server-goroutine

handle_evt

serve_evts

main-goroutine
store_evt goroutine #n

Sébastien Binet (



Non-elements of Go

@ no dynamic libraries (frown upon)
@ no dynamic loading (yet)
» but can either rely on separate processes
* IPC is made easy via the netchan package
» or rebuild executables on the fly
* compilation of Go code is fast
* even faster than FORTRAN and/or C
@ no templates/generics

» still open issue
» looking for the proper Go -friendly design

@ no operator overloading

Sébastien Binet (LAL) 2011-09-06



Go from anywhere to everywhere

@ code compilation and distribution are (de facto) standardized
@ put your code on some repository

» bitbucket, launchpad, googlecode, github, ...
@ check out, compile and install in one go with goinstall:

» goinstall bitbucket.org/binet/igo
» no root access required
» automatically handle dependencies

@ goinstall -able packages are listed on the dashboard:
» godashboard.appspot.com

Sébastien Binet (LAL) 2011-09-06


http://godashboard.appspot.com

Go and C/C++

Interfacing with C:

@ done with the CGo foreign function interface
@ #include the header file to the C library to be wrapped
@ access the C types and functions under the artificial “C" package
package myclib
// #include <stdio.h>
// #include <stdlib.h>
import "C"
import "unsafe"

func foo(s string) {
c_str := C.CString(s) // create a C string from a Go o
C.fputs(c_str, C.stdout)
C.free(unsafe.Pointer(c_str))

by

Sébastien Binet (LAL)

2011-09-06 20 / 27



Go and C/C++

Interfacing with C++:

@ a bit more involved

@ uses SWIG
» you write the SWIG interface file for the library to be wrapped
» SWIG will generate the C stub functions
» which can then be called using the CGo machinery

the Go files doing so are automatically generated as well

v

@ handles overloading, multiple inheritance

@ allows to provide a Go implementation for a C++ abstract class

Problem

SWIG doesn’'t understand all of C++03
@ e.g. can't parse TObject.h

Sébastien Binet (LAL) 2011-09-06 21 /27



Go and FORTRAN

Two cases:

@ lucky enough to wrap “legacy” Fortran 03 code with the IS0
C interface:
» just use CGo
@ wrapping legacy F77 code:
» write the C interface code
» use CGo to call this interface code
@ examples:
» http://bitbucket.org/binet/go-hepevt
» http://bitbucket.org/binet/go-herwig

@ no automatic press-button solution

» although there is no technical blocker to write such a thing
» this has been done for python (e.g.: fwrap)

Sébastien Binet (LAL) 2011-09-06 22 /27


http://bitbucket.org/binet/go-hepevt
http://bitbucket.org/binet/go-herwig

Go and ROOT

o step 1 of evil plan for (HENP) world domination:
» Go bindings to ROOT

e http://bitbucket.org/binet/go-croot
» hand written CGo bindings to a hand written library exposing a C
interface to (a subset of) ROOT

* TFile, TTree/TChain
* Reflex, Cint
* TRandom

» handles automatic conversion of Go structs into their C
counter-part
» and vice versa
* two-way conversion is done by connecting the C++ introspection
library (Reflex) with its Go counter-part (the reflect package)

Sébastien Binet (LAL) 2011-09-06 23 /27


http://bitbucket.org/binet/go-croot

Go and ROOT

@ running the ROOT TTree example, in C++, via the C API and
through go-croot over 10000000 events:

29.04s user 1.03s system 86% cpu 34.83 total (C++)
29.12s user 1.09s system 85% cpu 35.48 total (CRoot)
44.83s user 1.24s system 87% cpu 54.36 total (go-croot)

$ uname -a

Linux farnsworth 3.0-ARCH #1 SMP PREEMPT
x86_64 Intel(R) Core(TM)2 Duo

CPU T9400 @ 2.53GHz GenuinelIntel GNU/Linux

additional overhead w.r.t. CRoot

o different calling conventions (b/w C and Go) need to be handled
@ Note: for such loopy-code, using GCC-Go would be better

Sébastien Binet (LAL) 2011-09-06 24 / 27



Conclusions

Can Go address the (non-) multicore problems of yesterday ?

@ yes:
» productivity (dev cycle of a scripting language)
» build scalability (package system)
» deployment (goinstall)
» support for “legacy” C/C++/Fortran software (cgo+swig)

Can Go address the multicore issues of tomorrow 7

@ yes:
» easier to write concurrent code with the builtin abstractions
(goroutines, channels)

» easier to have efficient concurrent code (stack management)
» still have to actually write efficient concurrent code, though. ..

* work partitioning, load balancing, ...

@ but: no such thing as a magic wand for multicores/manycores

Sébastien Binet (LAL) 2011-09-06 25 / 27



Prospects - what's missing ?

@ better support for C++ libraries
» building on ROOT C++ dictionary infrastructure

* now using GCC-Xml + a modified version of genreflex
* tomorrow using LLVM/CLang

» automatically generate the Go bindings

@ bind more HEP libraries ?
@ provide a Go interpreter 7
» bitbucket.org/binet/igo

Sébastien Binet (LAL) 2011-09-06


http://bitbucket.org/binet/igo

Resources

golang.org
root.cern.ch

swig.org
godashboard.appspot.com
bitbucket.org/binet/go-hepevt
bitbucket.org/binet/go-herwig
bitbucket.org/binet/go-croot
fwrap

LLVM

ClLang

Sébastien Binet (LAL) 2011-09-06


http://golang.org
http://root.cern.ch
http://www.swig.org/
http://godashboard.appspot.com
http://bitbucket.org/binet/go-hepevt
http://bitbucket.org/binet/go-herwig
http://bitbucket.org/binet/go-croot
http://fortrancython.wordpress.com/
http://llvm.org/
http://clang.llvm.org/

	go in HEP

