
Can ‘Go’ address the multicore issues of today
and the manycore problems of tomorrow ?

Sébastien Binet

2011-09-06

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 1 / 27



Introduction

Moore’s law ceased to provide the traditional single-threaded
performance increases

I clock-frequency wall of 2003
I still deliver increases in transistor density

multicore systems become the norm
need to “go parallel” to get scalability

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 2 / 27



In a C++ world. . .

parallel programming in C++ is doable:
I C/C++ “locking + threads” (pthreads, WinThreads)

F excellent performance
F good generality
F relatively low productivity

I multi-threaded applications. . .
F hard to get right
F hard to keep right
F hard to keep efficient and optimized across releases

I multi-process applications. . .
F à la AthenaMP/GaudiMP (see Vahko’s talk on Thu.)
F leverage fork+COW on GNU/Linux
F event-level based parallelism

Parallel programming in C++ is doable,
but no panacea

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 3 / 27



In a C++ world. . .

in C++03, we have libraries to help with parallel programming
I boost::lambda
I boost::MPL
I boost::thread
I Threading Building Blocks (TBB)
I Concurrent Collections (CnC)
I OpenMP
I . . .

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 4 / 27



In a C++11 world. . .

in C++11, we get:
I λ functions (and a new syntax to define them)
I std::thread,
I std::future,
I std::promise

Helps taming the beast
... at the price of sprinkling templates everywhere...

... and complicating further a not so simple language...

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 5 / 27



In a C++11 world. . .

yay! for C++11, but old problems are still there. . .

build scalability
I templates
I headers system
I still no module system (WG21 - N2073)

F maybe in the next Technical Report ?

code distribution
I no CPAN like readily available infrastructure (and cross-platform)

for C++
I remember ROOT/BOOT ? (CHEP-06)

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 6 / 27



Time for a new language ?

“Successful new languages build on existing languages
and where possible, support legacy software. C++ grew our
of C. java grew out of C++. To the programmer, they are
all one continuous family of C languages.” (T. Mattson)

notable exception (which confirms the rule): python

Can we have a language:
as easy as python,
as fast (or nearly as fast) as C/C++/FORTRAN,
with none of the deficiencies of C++,
and is multicore/manycore friendly ?

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 7 / 27



Why not Go ?
golang.org

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 8 / 27

http://golang.org


Elements of go

obligatory hello world example. . .

package main
import "fmt"
func main() {

fmt.Println("Hello, World")
}

http://golang.org
Thursday, July 22, 2010

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 9 / 27



Elements of go - II

founding fathers:
I Russ Cox, Robert Griesemer, Ian Lance Taylor
I Rob Pike, Ken Thompson

concurrent, compiled
garbage collected
an open-source general programming language
best of both ‘worlds’:

I feel of a dynamic language
F limited verbosity thanks to type inference system, map, slices

I safety of a static type system
I compiled down to machine language (so it is fast)

F goal is within 10% of C

object-oriented (but w/o classes), builtin reflection
first-class functions with closures
duck-typing à la python

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 10 / 27



Go concurrent

goroutines

a function executing concurrently as other goroutines in the
same address space
starting a goroutine is done with the go keyword

I go myfct(arg1, arg2)

growable stack
I lightweight threads
I starts with a few kB, grows (and shrinks) as needed

F now, also available in GCC 4.6 (thanks to the GCC-Go front-end)
I no stack overflow

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 11 / 27



Go concurrent - II

channels

provide (type safe) communication and synchronization

// create a channel of mytype
my_chan := make(chan mytype)
my_chan <- some_data // sending data
some_data = <- my_chan // receiving data

send and receive are atomic

"Do not communicate by sharing memory; instead,
share memory by communicating"

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 12 / 27



Go concurrent - III
package evtproc

import "gaudi/kernel"

// --- evt state ---

type evtstate struct {

idx int

sc kernel.Error

data kernel.DataStore

}

// --- evt processor ---

type evtproc struct {

kernel.Service

algs []kernel.IAlgorithm

nworkers int

}

func (self *evtproc)

NextEvent(evtmax int) kernel.Error {

if self.nworkers > 1 {

return self.mp_NextEvent(evtmax)

}

return self.seq_NextEvent(evtmax)

}

1

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 13 / 27



Go concurrent - IV
import "gaudi/kernel"

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {
// ... setup event server ...
in_queue, out_queue, quit := start_evt_server(self.nworkers)
for i := 0; i < evtmax; i++ {

in_queue <- new_evtstate(i)
}

for evt := range out_queue {
if !evt.sc.IsSuccess() {

n_fails++
}
n_processed++
if n_processed == evtmax {

quit <- true
close(out_queue)
break

}
}
if n_fails != 0 {

return kernel.StatusCode(1)
}

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 14 / 27



Go concurrent - V

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {

start_evt_server := func(nworkers int) (in_evt_queue,

out_evt_queue chan *evtstate,

quit chan bool) {

in_evt_queue = make(chan *evtstate, nworkers)

out_evt_queue = make(chan *evtstate)

quit = make(chan bool)

go serve_evts(in_evt_queue, out_evt_queue, quit)

return in_evt_queue, out_evt_queue, quit

}

// ...

return kernel.StatusCode(0)

}

1

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 15 / 27



Go concurrent - VI

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {

handle := func(evt *evtstate, out_queue chan *evtstate) {

self.MsgInfo("nextEvent[%v]...\n", evt.idx)

evt.sc = self.ExecuteEvent(evt)

out_queue <- evt

}

serve_evts := func(in_evt_queue, out_evt_queue chan *evtstate,

quit chan bool) {

for {

select {

case ievt := <-in_evt_queue:

go handle(ievt, out_evt_queue)

case <-quit:

return

}

}

}

// ...

return kernel.StatusCode(0)

}

1

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 16 / 27



Go concurrent - VII

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 17 / 27



Non-elements of Go

no dynamic libraries (frown upon)
no dynamic loading (yet)

I but can either rely on separate processes
F IPC is made easy via the netchan package

I or rebuild executables on the fly
F compilation of Go code is fast
F even faster than FORTRAN and/or C

no templates/generics
I still open issue
I looking for the proper Go -friendly design

no operator overloading

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 18 / 27



Go from anywhere to everywhere

code compilation and distribution are (de facto) standardized
put your code on some repository

I bitbucket, launchpad, googlecode, github, . . .
check out, compile and install in one go with goinstall:

I goinstall bitbucket.org/binet/igo
I no root access required
I automatically handle dependencies

goinstall -able packages are listed on the dashboard:
I godashboard.appspot.com

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 19 / 27

http://godashboard.appspot.com


Go and C/C++
Interfacing with C:

done with the CGo foreign function interface
#include the header file to the C library to be wrapped
access the C types and functions under the artificial “C” package

package myclib
// #include <stdio.h>
// #include <stdlib.h>
import "C"
import "unsafe"

func foo(s string) {
c_str := C.CString(s) // create a C string from a Go one
C.fputs(c_str, C.stdout)
C.free(unsafe.Pointer(c_str))

}
Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 20 / 27



Go and C/C++

Interfacing with C++:

a bit more involved
uses SWIG

I you write the SWIG interface file for the library to be wrapped
I SWIG will generate the C stub functions
I which can then be called using the CGo machinery
I the Go files doing so are automatically generated as well

handles overloading, multiple inheritance
allows to provide a Go implementation for a C++ abstract class

Problem

SWIG doesn’t understand all of C++03
e.g. can’t parse TObject.h

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 21 / 27



Go and FORTRAN

Two cases:

lucky enough to wrap “legacy” Fortran 03 code with the ISO
C interface:

I just use CGo

wrapping legacy F77 code:
I write the C interface code
I use CGo to call this interface code

examples:
I http://bitbucket.org/binet/go-hepevt
I http://bitbucket.org/binet/go-herwig

no automatic press-button solution
I although there is no technical blocker to write such a thing
I this has been done for python (e.g.: fwrap)

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 22 / 27

http://bitbucket.org/binet/go-hepevt
http://bitbucket.org/binet/go-herwig


Go and ROOT

step 1 of evil plan for (HENP) world domination:
I Go bindings to ROOT

http://bitbucket.org/binet/go-croot
I hand written CGo bindings to a hand written library exposing a C

interface to (a subset of) ROOT
F TFile, TTree/TChain
F Reflex, Cint
F TRandom

I handles automatic conversion of Go structs into their C
counter-part

I and vice versa
F two-way conversion is done by connecting the C++ introspection

library (Reflex) with its Go counter-part (the reflect package)

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 23 / 27

http://bitbucket.org/binet/go-croot


Go and ROOT

running the ROOT TTree example, in C++, via the C API and
through go-croot over 10000000 events:

29.04s user 1.03s system 86% cpu 34.83 total (C++)
29.12s user 1.09s system 85% cpu 35.48 total (CRoot)
44.83s user 1.24s system 87% cpu 54.36 total (go-croot)

$ uname -a
Linux farnsworth 3.0-ARCH #1 SMP PREEMPT
x86_64 Intel(R) Core(TM)2 Duo
CPU T9400 @ 2.53GHz GenuineIntel GNU/Linux

additional overhead w.r.t. CRoot
different calling conventions (b/w C and Go) need to be handled
Note: for such loopy-code, using GCC-Go would be better

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 24 / 27



Conclusions
Can Go address the (non-) multicore problems of yesterday ?

yes:
I productivity (dev cycle of a scripting language)
I build scalability (package system)
I deployment (goinstall)
I support for “legacy” C/C++/Fortran software (cgo+swig)

Can Go address the multicore issues of tomorrow ?

yes:
I easier to write concurrent code with the builtin abstractions

(goroutines, channels)
I easier to have efficient concurrent code (stack management)
I still have to actually write efficient concurrent code, though. . .

F work partitioning, load balancing, . . .

but: no such thing as a magic wand for multicores/manycores

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 25 / 27



Prospects - what’s missing ?

better support for C++ libraries
I building on ROOT C++ dictionary infrastructure

F now using GCC-Xml + a modified version of genreflex
F tomorrow using LLVM/CLang

I automatically generate the Go bindings

bind more HEP libraries ?
provide a Go interpreter ?

I bitbucket.org/binet/igo

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 26 / 27

http://bitbucket.org/binet/igo


Resources

golang.org
root.cern.ch
swig.org
godashboard.appspot.com
bitbucket.org/binet/go-hepevt
bitbucket.org/binet/go-herwig
bitbucket.org/binet/go-croot
fwrap
LLVM
CLang

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 27 / 27

http://golang.org
http://root.cern.ch
http://www.swig.org/
http://godashboard.appspot.com
http://bitbucket.org/binet/go-hepevt
http://bitbucket.org/binet/go-herwig
http://bitbucket.org/binet/go-croot
http://fortrancython.wordpress.com/
http://llvm.org/
http://clang.llvm.org/

	go in HEP

