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Introduction

Moore’s law ceased to provide the traditional single-threaded
performance increases

I clock-frequency wall of 2003
I still deliver increases in transistor density

multicore systems become the norm
need to “go parallel” to get scalability
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In a C++ world. . .

parallel programming in C++ is doable:
I C/C++ “locking + threads” (pthreads, WinThreads)

F excellent performance
F good generality
F relatively low productivity

I multi-threaded applications. . .
F hard to get right
F hard to keep right
F hard to keep efficient and optimized across releases

I multi-process applications. . .
F à la AthenaMP/GaudiMP (see Vahko’s talk on Thu.)
F leverage fork+COW on GNU/Linux
F event-level based parallelism

Parallel programming in C++ is doable,
but no panacea
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In a C++ world. . .

in C++03, we have libraries to help with parallel programming
I boost::lambda
I boost::MPL
I boost::thread
I Threading Building Blocks (TBB)
I Concurrent Collections (CnC)
I OpenMP
I . . .
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In a C++11 world. . .

in C++11, we get:
I λ functions (and a new syntax to define them)
I std::thread,
I std::future,
I std::promise

Helps taming the beast
... at the price of sprinkling templates everywhere...

... and complicating further a not so simple language...
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In a C++11 world. . .

yay! for C++11, but old problems are still there. . .

build scalability
I templates
I headers system
I still no module system (WG21 - N2073)

F maybe in the next Technical Report ?

code distribution
I no CPAN like readily available infrastructure (and cross-platform)

for C++
I remember ROOT/BOOT ? (CHEP-06)
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Time for a new language ?

“Successful new languages build on existing languages
and where possible, support legacy software. C++ grew our
of C. java grew out of C++. To the programmer, they are
all one continuous family of C languages.” (T. Mattson)

notable exception (which confirms the rule): python

Can we have a language:
as easy as python,
as fast (or nearly as fast) as C/C++/FORTRAN,
with none of the deficiencies of C++,
and is multicore/manycore friendly ?
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Why not Go ?
golang.org
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Elements of go

obligatory hello world example. . .

package main
import "fmt"
func main() {

fmt.Println("Hello, World")
}

http://golang.org
Thursday, July 22, 2010
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Elements of go - II

founding fathers:
I Russ Cox, Robert Griesemer, Ian Lance Taylor
I Rob Pike, Ken Thompson

concurrent, compiled
garbage collected
an open-source general programming language
best of both ‘worlds’:

I feel of a dynamic language
F limited verbosity thanks to type inference system, map, slices

I safety of a static type system
I compiled down to machine language (so it is fast)

F goal is within 10% of C

object-oriented (but w/o classes), builtin reflection
first-class functions with closures
duck-typing à la python
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Go concurrent

goroutines

a function executing concurrently as other goroutines in the
same address space
starting a goroutine is done with the go keyword

I go myfct(arg1, arg2)

growable stack
I lightweight threads
I starts with a few kB, grows (and shrinks) as needed

F now, also available in GCC 4.6 (thanks to the GCC-Go front-end)
I no stack overflow
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Go concurrent - II

channels

provide (type safe) communication and synchronization

// create a channel of mytype
my_chan := make(chan mytype)
my_chan <- some_data // sending data
some_data = <- my_chan // receiving data

send and receive are atomic

"Do not communicate by sharing memory; instead,
share memory by communicating"

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 12 / 27



Go concurrent - III
package evtproc

import "gaudi/kernel"

// --- evt state ---

type evtstate struct {

idx int

sc kernel.Error

data kernel.DataStore

}

// --- evt processor ---

type evtproc struct {

kernel.Service

algs []kernel.IAlgorithm

nworkers int

}

func (self *evtproc)

NextEvent(evtmax int) kernel.Error {

if self.nworkers > 1 {

return self.mp_NextEvent(evtmax)

}

return self.seq_NextEvent(evtmax)

}

1
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Go concurrent - IV
import "gaudi/kernel"

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {
// ... setup event server ...
in_queue, out_queue, quit := start_evt_server(self.nworkers)
for i := 0; i < evtmax; i++ {

in_queue <- new_evtstate(i)
}

for evt := range out_queue {
if !evt.sc.IsSuccess() {

n_fails++
}
n_processed++
if n_processed == evtmax {

quit <- true
close(out_queue)
break

}
}
if n_fails != 0 {

return kernel.StatusCode(1)
}
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Go concurrent - V

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {

start_evt_server := func(nworkers int) (in_evt_queue,

out_evt_queue chan *evtstate,

quit chan bool) {

in_evt_queue = make(chan *evtstate, nworkers)

out_evt_queue = make(chan *evtstate)

quit = make(chan bool)

go serve_evts(in_evt_queue, out_evt_queue, quit)

return in_evt_queue, out_evt_queue, quit

}

// ...

return kernel.StatusCode(0)

}

1
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Go concurrent - VI

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {

handle := func(evt *evtstate, out_queue chan *evtstate) {

self.MsgInfo("nextEvent[%v]...\n", evt.idx)

evt.sc = self.ExecuteEvent(evt)

out_queue <- evt

}

serve_evts := func(in_evt_queue, out_evt_queue chan *evtstate,

quit chan bool) {

for {

select {

case ievt := <-in_evt_queue:

go handle(ievt, out_evt_queue)

case <-quit:

return

}

}

}

// ...

return kernel.StatusCode(0)

}

1
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Go concurrent - VII
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Non-elements of Go

no dynamic libraries (frown upon)
no dynamic loading (yet)

I but can either rely on separate processes
F IPC is made easy via the netchan package

I or rebuild executables on the fly
F compilation of Go code is fast
F even faster than FORTRAN and/or C

no templates/generics
I still open issue
I looking for the proper Go -friendly design

no operator overloading
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Go from anywhere to everywhere

code compilation and distribution are (de facto) standardized
put your code on some repository

I bitbucket, launchpad, googlecode, github, . . .
check out, compile and install in one go with goinstall:

I goinstall bitbucket.org/binet/igo
I no root access required
I automatically handle dependencies

goinstall -able packages are listed on the dashboard:
I godashboard.appspot.com
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Go and C/C++
Interfacing with C:

done with the CGo foreign function interface
#include the header file to the C library to be wrapped
access the C types and functions under the artificial “C” package

package myclib
// #include <stdio.h>
// #include <stdlib.h>
import "C"
import "unsafe"

func foo(s string) {
c_str := C.CString(s) // create a C string from a Go one
C.fputs(c_str, C.stdout)
C.free(unsafe.Pointer(c_str))

}
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Go and C/C++

Interfacing with C++:

a bit more involved
uses SWIG

I you write the SWIG interface file for the library to be wrapped
I SWIG will generate the C stub functions
I which can then be called using the CGo machinery
I the Go files doing so are automatically generated as well

handles overloading, multiple inheritance
allows to provide a Go implementation for a C++ abstract class

Problem

SWIG doesn’t understand all of C++03
e.g. can’t parse TObject.h
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Go and FORTRAN

Two cases:

lucky enough to wrap “legacy” Fortran 03 code with the ISO
C interface:

I just use CGo

wrapping legacy F77 code:
I write the C interface code
I use CGo to call this interface code

examples:
I http://bitbucket.org/binet/go-hepevt
I http://bitbucket.org/binet/go-herwig

no automatic press-button solution
I although there is no technical blocker to write such a thing
I this has been done for python (e.g.: fwrap)
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Go and ROOT

step 1 of evil plan for (HENP) world domination:
I Go bindings to ROOT

http://bitbucket.org/binet/go-croot
I hand written CGo bindings to a hand written library exposing a C

interface to (a subset of) ROOT
F TFile, TTree/TChain
F Reflex, Cint
F TRandom

I handles automatic conversion of Go structs into their C
counter-part

I and vice versa
F two-way conversion is done by connecting the C++ introspection

library (Reflex) with its Go counter-part (the reflect package)
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Go and ROOT

running the ROOT TTree example, in C++, via the C API and
through go-croot over 10000000 events:

29.04s user 1.03s system 86% cpu 34.83 total (C++)
29.12s user 1.09s system 85% cpu 35.48 total (CRoot)
44.83s user 1.24s system 87% cpu 54.36 total (go-croot)

$ uname -a
Linux farnsworth 3.0-ARCH #1 SMP PREEMPT
x86_64 Intel(R) Core(TM)2 Duo
CPU T9400 @ 2.53GHz GenuineIntel GNU/Linux

additional overhead w.r.t. CRoot
different calling conventions (b/w C and Go) need to be handled
Note: for such loopy-code, using GCC-Go would be better
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Conclusions
Can Go address the (non-) multicore problems of yesterday ?

yes:
I productivity (dev cycle of a scripting language)
I build scalability (package system)
I deployment (goinstall)
I support for “legacy” C/C++/Fortran software (cgo+swig)

Can Go address the multicore issues of tomorrow ?

yes:
I easier to write concurrent code with the builtin abstractions

(goroutines, channels)
I easier to have efficient concurrent code (stack management)
I still have to actually write efficient concurrent code, though. . .

F work partitioning, load balancing, . . .

but: no such thing as a magic wand for multicores/manycores
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Prospects - what’s missing ?

better support for C++ libraries
I building on ROOT C++ dictionary infrastructure

F now using GCC-Xml + a modified version of genreflex
F tomorrow using LLVM/CLang

I automatically generate the Go bindings

bind more HEP libraries ?
provide a Go interpreter ?

I bitbucket.org/binet/igo
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Resources

golang.org
root.cern.ch
swig.org
godashboard.appspot.com
bitbucket.org/binet/go-hepevt
bitbucket.org/binet/go-herwig
bitbucket.org/binet/go-croot
fwrap
LLVM
CLang
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http://www.swig.org/
http://godashboard.appspot.com
http://bitbucket.org/binet/go-hepevt
http://bitbucket.org/binet/go-herwig
http://bitbucket.org/binet/go-croot
http://fortrancython.wordpress.com/
http://llvm.org/
http://clang.llvm.org/
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