
Can Go address the multicore issues of today and the

manycore problems of tomorrow?

Sébastien Binet

Laboratoire de l’Accélérateur Linéaire, Université Paris-Sud XI, 91898, Orsay, FR

E-mail: binet@cern.ch

Abstract. Current High Energy and Nuclear Physics (HENP) libraries and frameworks were
written before multicore systems became widely deployed and used. From this environment, a
’single-thread’ processing model naturally emerged but the implicit assumptions it encouraged
are greatly impairing our abilities to scale in a multicore/manycore world. While parallel
programming - still in an intensive phase of R&D despite the 30+ years of literature on
the subject - is an obvious topic to consider, other issues (build scalability, code clarity, code
deployment and ease of coding) are worth investigating when preparing for the manycore era.
Moreover, if one wants to use another language than C++, a language better prepared and
tailored for expressing concurrency, one also needs to ensure a good and easy reuse of already
field-proven libraries. We present the work resulting from such investigations applied to the Go

programming language. We first introduce the concurrent programming facilities Go is providing
and how its module system addresses the build scalability and dependency hell issues. We then
describe the process of leveraging the many (wo)man-years put into scientific Fortran/C/C++
libraries and making them available to the Go ecosystem. The ROOT data analysis framework,
the C-BLAS library and the Herwig-6 MonteCarlo generator will be taken as examples. Finally,
performances of the tools involved in a small analysis written in Go and using ROOT I/O library
will be presented.

1. Introduction
The “Free Lunch” is over: Moore’s law [1] can not be as easily leveraged as in the past, computer
scientists and software writers have now to be familiar with Amdahl’s law [2]. Indeed, computers
are no longer getting faster: instead, they are growing more and more CPUs, each of which is no
faster than the previous generation.

This increase in the number of cores evidently calls for more parallelism in HENP software.
Fortunately, typical HENP applications (event reconstruction, event selection,...) are usually
embarrassingly parallel, at least at the coarse-grained level: one “just” needs to call in parallel
the portion of code which massages the events retrieved from the detector (the event loop) while
still executing sequentially all the code processing each event.

However, this ’one event per core’ strategy may not scale up to hundreds or thousands of
cores, thus requiring library implementers and code writers at large to deal with sub-event
parallelism. Parallel programming in C++ has been done and is doable, but even if many
libraries such as Threading Building Blocks [6] or OpenMP [7] exist to help the burden, such
an endeavour is still quite tedious and error prone. Note that C++11 with lambda functions,
std::thread, std::future and std::promise will likely improve the situation but at the price

of sprinkling templates everywhere in the code, slowing down further the edit-compile-run cycle,
and complicating further an already not so simple language. The recent gain in popularity
of python [4] in HENP is probably a consequence of these two C++ defects, even if python is
probably not the best language to tackle parallel high performance computing. At this point, it
would seem reasonable to ask if using a new language more capable at leveraging multithreaded
environments would be a better alternative.

This paper explores such a path. We first introduce some of Gomost relevant features with
regard to concurrency and how its module system addresses the build scalability and dependency
hell issues. We then describe the process of leveraging the many (wo)man-years put into scientific
Fortran/C/C++ libraries and making them available to the Go ecosystem. The ROOT [8] data
analysis framework, the C-BLAS [9] library and the Herwig-6 [10] MonteCarlo generator will be
taken as examples. Finally, performances of a small analysis written in Go and using Fortran
and C++ libraries will be discussed.

2. New languages
Since HENP and C++ met to produce (among other projects) Gaudi [11] and ROOT [8], the language
landscape greatly changed. Many new languages appeared or became “mainstream” and, while
closely following the language trend was not achieved, some adaptations were performed. For
example, most of the Gaudi configuration and steering code is nowadays written in python

and most, if not all, C++ components (from ROOT and Gaudi) are also available from python.
But python (or more precisely CPython) has well-known scalability issues in a multithreaded
environment because of its Global Interpreter Lock (GIL) which serializes access to python

objects 1. Moreover, even if this issue can be worked around by writing C extension modules,
having an event loop in an interpreted language is not the best bet CPU-speed wise.

We investigated Go as a possible alternative to C++.

3. Elements of Go

Go [5] is a new open source language from Google, first released in November 2009. It is
a compiled language with a garbage collector and builtin support for reflection, first-class
functions, closures and object-oriented programming. The obligatory “hello world” program
can be found in figure 1.

1 package main
2 import "fmt"

3 func main () {
4 fmt . Pr in t ln ("Hello, world")
5 }

Figure 1. The obligatory “hello world” program, in Go.

Go is lauded to bring the best of both dynamic and static worlds:

• the feel of a dynamic language, thanks to its limited verbosity, its type inference system
and its fast compile-edit-run cycle,

• the safety of a static type system,

• the speed of a machine compiled language. 2

1 Other python implementations (JPython, IronPython,. . .) do not present this limitation.
2 the aim of the Go authors is to eventually bring the performances of a Go binary within 10% of C.

Moreover, Go support for interfaces which resembles the duck-typing motto of python fits
nicely into HENP frameworks like Gaudi. Finally and more importantly, Go has language support
for concurrency, following the Communicating Sequential Processes (CSP) [12] model: prefixing
a method or function call with the keyword go will spawn off a goroutine: the function will be
executed concurrently to other codepaths. goroutines are multiplexed onto multiple OS threads
so blocked goroutines because of a non-finished I/O operation will not halt the execution of
the others. Furthermore, goroutines are lightweight thanks to their variable stack size, starting
small and growing as needed.

In Go, the typesafe mechanism to exchange data between goroutines, is a channel. Sending
or receiving data on a channel is atomic and can thus be used as a synchronization mechanism.
It should be noted that as of 2011, Go is lacking a few features which would probably make the
implementation of typical HENP frameworks a bit easier, such as dynamic libraries and dynamic
code loading. Another set of missing features more important for efficient scientific code is the
lack of generics 3 and, for mathematical code clarity, the lack of operator overloading.

Go programs are constructed by linking together packages, whose properties allow efficient
management of dependencies. Each package may in turn use facilities provided by other
packages. From these inter-package dependencies, forming an acyclic dependency graph, a
correct compilation order can be inferred. Within a package, all global variables, functions
and types defined in that package are visible. From the outside, only the exported ones are
available. In Go, the rule about visibility of information is simple: if a name (of a top-level type,
function, method, constant or variable, or of a structure field or method) is capitalized, users of
the package may see it. Otherwise, the name and hence the thing being named is visible only
inside the package in which it is declared. This is more than a convention: the rule is enforced
by the compiler. Each compiled package file imports transitive dependency informations. If
A.go depends on B.go which itself depends on C.go, compiling the package A will result in first
compiling C.go, B.go and then A.go. And to recompile A.go, the compiler will only have to read
the object file B.o but not C.o. At scale, this can result in huge speedups: the improvements
become exponential.

Third-party Go libraries and programs are also easily distributed via goinstall, an
executable providing automatic package installation with dependencies’ tracking. goinstall

is the de facto standard to compile and distribute Go code 4. An author wanting to distribute
Go code just needs to publish it on some repository (bitbucket, launchpad, github, . . .) and
clients will be able to check out, compile and install it in one go, without special permissions,
like in the shell session of figure 2.

1 s h e l l > g o i n s t a l l −v b i tbucket . org / b ine t /go−c root /pkg/ croot
2 g o i n s t a l l : b ig : sk ipp ing standard l i b r a r y
3 g o i n s t a l l : fmt : sk ipp ing standard l i b r a r y
4 [. . .]
5 g o i n s t a l l : b i tbucket . org / b ine t /go−ctypes /pkg/ ctypes : gomake −f− i n s t a l l
6 [. . .]
7 g o i n s t a l l : b i tbucket . org / b ine t /go−c root /pkg/ croot : gomake −f− i n s t a l l

Figure 2. Installing libraries or applications with goinstall. The croot Go package is being
goinstalled. Note how goinstall automatically installed the ctypes package, a dependency
of croot.

3 also called templates in C++.
4 goinstall is being refactored into a family of go binaries providing compilation and installation facilities in
view of a frozen and long term supported Go-1 version.

Then, clients can import these packages like any other, with the correct import path, as
shown in figure 3.

1 package mypackage
2
3 import "bitbucket.org/binet/go-croot/pkg/croot"

4 // croo t can now be used l i k e any package :
5 // f i l e := croo t . OpenFile (. . .)

Figure 3. Importing and using third-party packages, using the correct import path.

Finally, a categorized list of all goinstall-able packages and commands is kept on the
godashboard [13], providing the last piece for an effective CPAN-like facility.

4. Wrapping foreign language libraries
To paraphrase Tim Mattson, “successful new languages build on existing languages and where
possible, support legacy software. C++ grew out of C. Java grew out of C++.” Go is no exception
and provides a standard way to access C libraries: cgo.

4.1. Wrapping C libraries
cgo allows to access and use entities defined in a C library with limited effort, as shown in
figure 4.

1 package myclib
2 // #inc l ude <s t d i o . h>
3 // #inc l ude < s t d l i b . h>
4 import "C"

5 import "unsafe"

6
7 func f oo (s string) {
8 c s t r := C. CString (s) // crea t e a C s t r i n g from a Go one
9 C. fput s (c s t r , C. stdout)

10 C. f r e e (unsa fe . Po inter (c s t r))
11 }

Figure 4. Wrapping C stdio with cgo.

Wrapping bigger libraries, such as C-BLAS, is no different albeit quite repetitive and
mechanical a task, which should probably be automatized, using HENP tools like genreflex

or rootcint, or using a SWIG [14] interface.

4.2. Wrapping Fortran libraries
Wrapping Fortran 2003 code providing an ISO C interface is similar to the simple C library
case. However, Fortran 77 libraries are more common in HENP and are dealt with the usual
way:

• write a set of C wrappers to access the needed functionalities from the Fortran library,

• write cgo code to wrap the C wrappers.

1 package cb l a s
2
3 /∗
4 #inc lude <complex . h>
5 #cgo LDFLAGS: − l c b l a s
6 #inc lude ” c b l a s . h”
7 ∗/
8 import "C"

9 import "unsafe"

10
11 /∗
12 C s i gna tu r e :
13 f l o a t c b l a s s d s d o t (cons t i n t N, cons t f l o a t alpha ,
14 cons t f l o a t ∗X, const i n t incX ,
15 cons t f l o a t ∗Y, const i n t incY) ;
16 ∗/
17 func Sdsdot (alpha float32 , x , y [] float32) float32 {
18 i f len (x) != len (y) {
19 panic ("slices’ size differ")
20 }
21
22 c N := C. int (len (x))
23 c a lpha := C. f loat (alpha)
24
25 c X := (∗C. f loat) (unsa fe . Po inter (&x [0]))
26 c incX := C. int (1)
27
28 c Y := (∗C. f loat) (unsa fe . Po inter (&y [0]))
29 c incY := C. int (1)
30
31 return float32 (
32 C. c b l a s s d s d o t (c N , c alpha ,
33 c X , c incX ,
34 c Y , c incY))
35 }

Figure 5. Wrapping C-BLAS with cgo.

Again, a tool automatizing writing this kind of repetitive and mechanical code would greatly
ease the wrapping task. There is no technical showstopper to implement such a tool and evidence
with f2py, a tool to automatically create python bindings for Fortran 77 code, shows it is
indeed possible to generate the needed boilerplate code.

4.3. Wrapping C++ libraries
Wrapping C++ is a bit more involved a task. The current solution is to use SWIG and a SWIG

interface file to generate cgo code. The Go backend of SWIG is sophisticated enough to handle
and map C++ constructs not existing in Go, back to idiomatic Go code. For example, overloaded
functions are dispatched from a common Go variadic function to each cgo-wrapped function;
while multiple inheritance is handled by defining multiple Go interfaces; and virtual methods
are implemented by methods on interfaces. And thanks to SWIG machinery, it is even possible
to implement a C++ abstract class with a Go struct implementing the according interface.

1
2 /∗ c−hepev t / hepev t . h ∗/
3
4 #ifde f c p l u s p l u s
5 extern ‘ ‘C’’ {
6 #endif
7
8 /∗∗ event number
9 ∗/

10 int
11 hepevt event number () ;
12
13 #ifde f c p l u s p l u s
14 }
15 #endif
16
17 /∗ c−hepev t / hepev t . cxx ∗/
18 extern ‘ ‘C’’ {
19 extern struct {
20 char data [h e p e v t b y t e s a l l o c a t i o n] ;
21 } hepevt ;
22 }
23 #define hepevt hepevt
24
25 stat ic int
26 byte num to int (unsigned int b)
27 {
28 // cons i s t ency checks
29 // . . .
30 i f (s s i z e o f i n t == s izeof (short int)) {
31 short int ∗ s i = (short int∗)&hepevt . data [b] ;
32 return (int) (∗ s i) ;
33 }
34 // error hand l ing
35 // . . .
36 return 0 ;
37 }
38
39 /∗∗ event number
40 ∗/
41 int
42 hepevt event number ()
43 {
44 return byte num to int (0) ;
45 }

Figure 6. Excerpts of the C wrapper around HEPEVT.

However, SWIG does not use a proper C++ compiler to parse the C++ header files and thus can
not handle all of C++03 constructs. Attempts at wrapping ROOT’s TObject class for this paper
failed, even after trying numerous tricks like presenting a preprocessed TObject.h file to SWIG

or injecting #ifdef SWIG preprocessor directives 5.
A more versatile tool, built on top of gccxml or clang, would resolve this issue. In

the meantime, Go can still leverage ROOT libraries, resorting to the same recipe than in the
Fortran77 case: write a C-API on top of the C++ one and write cgo code to wrap the former.

5. Results
To test the performances and applicability of using Go with “legacy” C++ code, the transliteration
of the canonical ROOT TTree reading example from the ROOT tutorial has been performed. The
code is provided on a Mercurial repository [15]. The same exercize has been done using the
C-API croot calling the usual ROOT C++ code to infer the overhead induced by this additional
layer, and disentangle the contribution from the pure cgo overhead. Results are reported in
figure 7.

1 s h e l l > time t t r e e−ex−1
2 29 .04 s user 1 .03 s system 86% cpu 34 .83 t o t a l (C++)
3 29 .12 s user 1 .09 s system 85% cpu 35 .48 t o t a l (CRoot)
4 44 .83 s user 1 .24 s system 87% cpu 54 .36 t o t a l (go−c root)
5
6 s h e l l > uname −a
7 Linux farnsworth 3.0−ARCH #1 SMP PREEMPT
8 x86 64 I n t e l (R) Core (TM)2 Duo
9 CPU T9400 @ 2.53GHz GenuineInte l GNU/Linux

Figure 7. Timings obtained for the ROOT TTree canonical example.

These timings show less than a factor two overhead with regard to the C++ version. One
should note that these timings were obtained with the 64bits version of the gc compiler
(weekly.2011-09-01 9619). We should note that, while performances of the gc compiler are
expected to improve, using the gccgo compiler would be a better match as far as pure number
crunching and calling C functions are concerned. Indeed, gccgo can on one hand leverage the
full set of optimizations that GCC can apply and on the other hand has smaller overhead calling
C functions 6. Nonetheless, we kept using gc as this is the compiler implementing all of the Go

features.

6. Conclusions
We presented the work on investigating Go as a viable C++ replacement for the multi-core era.
Go has many builtin capabilities to ease the burden of exposing and leveraging concurrency in
HENP applications as previously shown in [16]. The short development cycle together with the
code distribution platform and tools provide Go with a short ’time-to-market’ length.

Wrapping foreign language libraries, and especially C libraries, is made easy thanks to cgo,
a tool shipped with the Go distribution. Wrapping C++ is possible - albeit cumbersome - with
SWIG but is subject to SWIG’s limitations and does not seem to be applicable to large libraries
such as ROOT. An automatized solution built on top of gccxml or clang would greatly improve
the ability of Go to reuse ’legacy’ libraries.

5 While this could theoretically be a solution for SWIG’s preprocessing troubles with some macros in ROOT code
although not a particularly aesthetical one, this would not address SWIG’s limitations in handling < and > operators.
6 gc has a different calling convention than gcc, so cgo needs to perform additional work when calling C functions.
gccgo, for obvious reasons, has the same calling convention than gcc.

References
[1] Moore E 1965 Cramming more components onto integrated circuits Electronics Magazine
[2] Amdahl G 1967 Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities

AFIPS Conference Proceedings pp 483-485
[3] The C++ programming language http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf

[4] The python programming language http://python.org

[5] The Go programming language http://golang.org/

[6] Intel Threading Building Blocks http://threadingbuildingblocks.org

[7] OpenMP (Open Multi-Processing) http://openmp.org

[8] The ROOT framework, http://root.cern.ch
[9] Lawson C L, Hanson R J, Kincaid D, and Krogh F T 1979 Basic Linear Algebra Subprograms for FORTRAN

usage ACM Trans. Math. Soft pp 308-323 http://www.netlib.org

[10] Corcella G, Knowles I G, Marchesini G, Moretti S, Odagiri K, Richardson P, Seymour M H and Webber B
R 2001 HERWIG 6.5 JHEP 0101 (hep-ph/0011363)

[11] Mato P 1998 Gaudi-architecture design document Tech. Rep. LHCb-98-064
[12] CSP http://en.wikipedia.org/wiki/Communicating_sequential_processes

[13] The Go dashboard http://godashboard.appspot.com/project

[14] SWIG http://swig.org

[15] https://bitbucket.org/binet/go-io-benchmarks

[16] Binet S 2010 ng: what next-generation languages can teach us about HENP frameworks in the manycore era
J. Phys.: Conf. Ser. 331 042002

