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Abstract. We present the publicly available program NGluon allowing the numerical
evaluation of primitive amplitudes at one-loop order in massless QCD. The program allows
the computation of one-loop amplitudes for an arbitrary number of gluons. The focus of the
present article is the extension to one-loop amplitudes including an arbitrary number of massless
quark pairs. We discuss in detail the algorithmic differences to the pure gluonic case and present
cross checks to validate our implementation. The numerical accuracy is investigated in detail.

1. Introduction
The automation of next-to-leading (NLO) corrections to multi-particle processes in the Standard
Model is an important step in making precision predictions for signal and background reactions
studied at the Large Hadron Collider (LHC) at CERN. Recent years have seen considerable
progress in simplifying this complex task into a definite algorithm for arbitrary processes
[1, 2, 3, 4]. Full NLO distributions for a growing number of 2 → 4 [5, 6, 7, 8, 9, 10, 11, 12]
and even 2 → 5 [13, 14, 15] processes have now been achieved. The degree of automation
to which the virtual corrections to NLO observables can be computed has steadily improved
[16, 17, 18, 19, 20, 21, 22, 23].

In this article we review the computations of multi-parton amplitudes in massless QCD
using the NGluon c++ library [24]. The algorithm employs the generalised unitarity cutting
procedure to construct one-loop amplitudes from on-shell tree-level building blocks which we
review in section 2. We then describe the inclusion of amplitudes with multiple fermion pairs
in section 3 and present a detailed analysis of the performance and validity of our approach in
section 4. We finish by presenting our conclusions in section 5.

2. Review of Generalised Unitarity
The method of generalised unitarity has been studied extensively over the last few years. Based
on a purely algebraic approach, the method can be used to formulate a numerical algorithm for
the computation of one-loop amplitudes [26, 25, 4]. Detailed and helpful reviews on the subject
can be found in [27, 28, 29].
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The one-loop amplitudes we consider in this article are colour ordered QCD primitive
amplitudes where both colour generators and internal colour flow structure have been stripped
off leaving the simplest gauge invariant building blocks of the full amplitude. Each of these
terms has a well defined ordering of external legs and internal propagators.

A general one-loop primitive amplitude with no external massive particles, regulated in
D = 4−2ε dimensions, can be expressed in terms of a basis of scalar two-, three- and four-point
integral functions together with rational terms [25],
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∑
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Here si,j = (pi + · · · + pj)
2 are the Lorentz invariants of the amplitude. I4, I3 and I2 are the

well known scalar integral functions that can be written in terms of logarithms, dilogarithms
and the dimensional regulator, ε. Thanks to public programs for the numerical evaluation of
the scalar integrals for arbitrary kinematics, e.g. FF [30], OneLOop [31] or QCDLoop [32] 4,
the only process dependent quantities are the coefficients ck;X .

The box coefficients, c4;X , can be extracted by applying maximal cuts to the one-loop
primitive amplitude, factorises into a product of four tree-level amplitudes. The lower point
integral coefficients are then computed systematically by considering fewer cuts and subtracting
the contribution from the higher point functions previously evaluated. In each case the integrand
can be parametrised by a polynomial of the scalar products between the loop momentum and
spurious vectors that can be neatly described by the van Neerven-Vermaseren basis. The
construction in NGluon follows the description of [33]. The coefficients of the aforementioned
polynomial can be efficiently computed using a discrete Fourier projection.

For the rational terms we need to consider cuts in five, or more, dimensions. In the Four
Dimensional Helicity (FDH) scheme this can be achieved using a mass-shifted representation of

the amplitude, where the coefficients c
[4]
4 , c

[2]
3 and c

[2]
2 can be extracted from a discrete Fourier

projection over the additional mass parameter [34]. The mass shifted integrands factorise into
tree-level amplitudes with massive scalar particles and massive fermions.

3. Extension to Multiple Fermion
The extension of the pure gluonic case to multiple fermions has basically two fundamental new
features:

(i) more complicated tree-level amplitudes

(ii) restrictions when sewing tree-level amplitudes together to reconstruct the integrand

In the pure gluonic case, all tree-level amplitudes that can occur in a unitarity cut can be
assigned a unique colour ordering. This means that they can always be computed with the
well known Berends-Giele recursion relations [36]. The simple reason for this is the fact that
restoring the colour to the primitive amplitude both external legs and loop lines live in the
adjoint representation.

With the inclusion of quarks in the fundamental representation, this one-to-one
correspondence is in general lost. It happens that through unitarity cuts basic building blocks

4 QCDLoop is the default choice in NGluon
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Figure 1. A triple cut of the primitive amplitude Aprim(Q1; g2;Q3; g4) as shown in (a) with two
three-point tree amplitudes and one four-point tree amplitude Atree(Q1 ext; g 2 ext;Q 3 loop; g4 loop).
The latter consists of the above two ordered tree diagrams (b) and (c). “ext” resp. “loop” denote
external legs, resp. on-shell loop legs. Note the absence of any gluon self interactions.

appear that do not belong to any colour structure which would occur in the computation of
a Born amplitude. This can be seen, for instance, at those quark-gluon primitive amplitudes
contributing solely to the subleading colour part of the full amplitude. As an example, consider
the primitive amplitude Aprim(Q1; g2;Q3; g4) where the fixed ordering of external particles is
such that a quark anti-quark pair is separated by one gluon. In certain bubble and triangle
cuts, for example, among others, the following building block arises: Atree(Q1; g 2;Q loop; g loop)

as illustrated in figure 1. In Atree(Q1; g 2;Q loop; g loop), the non-abelian gluon interactions are
missing and in addition, the structure is not colour-ordered. It is possible to compute these
building blocks as a linear combination of colour-ordered tree amplitudes. However, in NGluon all
tree amplitudes are computed directly with help of colour stripped Feynman rules [35]. One
has to specify only the external leg order and its particle content. Tree amplitudes are then
evaluated independently on whether they can be assigned a definite colour structure or not.

Technically, we follow for the trees an off-shell bottom-up approach. This means that after the
order of n external legs with appropriate particle content has been fixed, one starts computing
all one-point currents, i.e. polarisation vectors for gluons and spinors for quarks. Subsequently,
higher point currents are computed systematically from lower point currents. The n-point
amplitude is computed by contracting the (n− 1)-point current with the nth one-point current.
This procedure has the advantage that many currents can be reused during the computation.
The most complicated vertex, the four gluon vertex, dictates the asymptotic scaling behaviour,
which can be shown to be polynomial of order O(n4).

In the context of generalised unitarity, an additional reduction in complexity can be achieved:
For different topologies, those currents that involve exclusively external legs never change and
can be computed once in the beginning for all possible cuts. An amplitude evaluation is then
equivalent to joining new currents that involve loop legs with external, already known currents.
This procedure reduces the polynomial scaling even further to order O(n3) [24].

In the highly symmetric pure gluonic case, every cut is possible. In other words, there is
always a loop propagator which connects directly two external legs. This is not necessarily the
case if more then one fermion line is involved in the amplitude. Take for example a closed quark
loop and one external qq-pair: The external quark line will never enter the loop and can’t be
put on shell.
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In order to describe this problem algorithmically, we use the concept of a parent diagram. In
our framework, a parent diagram of an n-point amplitude is an abstract one-loop diagram with
n fictitious three-point vertices and n propagators. The particle content of its propagators labels
the possible on-shell settings. In addition, it knows also which propagators do not exist. The
propagator content of the parent diagram is therefore the backbone to compute systematically
all integral coefficients. The procedure is exactly like in the pure gluonic case with the exception
that if a topology involves a non-existing propagator, the topology is simply skipped.

In order to determine the parent diagram, one draws an abstract loop without specifying any
particle content yet and attaches all ordered external legs to it. One starts with the specification
of the particle content of an arbitrary initial propagator in the loop and determines with the
external leg attached to this propagator the content of the next propagator in the loop. This
procedure is repeated for the whole diagram until one hits the initial propagator.

One sees immediately that certain propaga-
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Figure 2. A six-point parent diagram for
a primitive with two external fermion lines.
The first propagator is initialised with a
gluon. The third one is then unphysical and
represented by a blob.

tors of the parent diagram can’t be assigned
properly in case we are dealing with either 1)
a closed fermion loop plus at least one external
fermion line or 2) two (or more) fermion lines
where a quark-antiquark pair is separated by an-
other quark-antiquark pair. An example is given
in figure 2. Literally speaking, this means the
following: under the grey blob in figure 2 live
two fermion lines which can’t be represented by
a valid QCD propagator. As soon as the enclosed
quark line “leaves” the blob, the parent diagram
follows the same pattern as before. With the
knowledge of the parent diagram and the exter-
nal legs, the primitive is uniquely determined.

Another subtlety occurs for certain sublead-
ing colour contributions where a distinct cut re-
quires a tree consisting of two fermion lines which
belong, however, inside the one-loop amplitude
to the same fermion line. Formally, such trees
must be treated like two different flavour lines
since otherwise one would include contributions
that belong to amplitudes with a closed fermion

loop, a different class of amplitudes. A simple four-point example is given in figure 3.

4. Performance and Cross Checks
The first detailed verification of the implementation comes from comparison with the well known
universal Infra-Red and Ultra-Violet poles in the dimensional regulator, ε. This analytic cross
check tests the four-dimensional (or cut-constructible) parts of the amplitude and can also give
some hints as to a loss of numerical precision.

In order to get an overall estimate for the numerical accuracy, we use the following
observation: A re-scaling of the external momenta is equivalent to a simple change of units and
should therefore be physically equivalent. Since the floating point arithmetic at the hardware
level changes, the difference between the two evaluations — rescaled and un-rescaled — can
be used to estimate the numerical uncertainty. The validity of this approach is investigated in
detail in [24]. This test is very convenient to detect numerical instabilities and has in addition
the advantage that it is independent from any analytic input. Of course, it is not at all suited to
check the correctness of the implementation itself and has the drawback of a factor of two in the
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Figure 3. Triple cut with a two fermion tree amplitude. Although at one-loop level, there is
only one fermion line, they must be treated at tree-level as two distinct flavours in order to avoid
contributions from a closed quark loop (right diagram crossed out).

runtime. In case, the internal accuracy checks do fail, the phase space point can be reprocessed
using higher precision with the qd package described in [39].

Besides the poles, we made cross checks against known analytical and numerical results. For
the trivial extension of the pure gluonic case to a closed quark loop with exclusively external
gluons, we find full agreement with the reference phase space points in [37]. The correctness
of the implementation for primitives with one external quark line has been tested intensively
against all formulae of the qqggg results given in [35]. The agreement of these 5-point cases holds
both for different helicity configurations and quark-antiquark separations. For higher n-point
functions, we checked the IR-finite amplitudes A(q1, g2, ..., qi, ...gn) with helicity configuration
−++...+ given analytically in [38] for all possible quark-antiquark separations and find numerical
agreement. An example for an 8-point function is shown in figure 4. Only a very small fraction
of events show an accuracy of less then 3 digits which is enough for most practical calculations.
While the accuracy for different quark-antiquark separations does not differ much in the mixed
quark-gluon loop, it does for a closed quark loop. This is simply a consequence of the fermion
loop primitive amplitudes having fewer allowed propagators as the qq-separation increases. This
is also the reason why the computation time differs by roughly one order of magnitude depending
on the separation of the quark and the antiquark. An example for the runtime difference is shown
in table 1. Due to the vanishing of massless tadpoles, the largest two separations in the closed
quark loop do not contribute.

For the multiple fermion case, we find agreement in the poles for all primitives that we have
tested (up to 5 external quark-antiquark pairs).

When computing the full amplitude out of primitives, many tree-level amplitudes can be
reused. The necessary conditions are: 1) the loop momentum for a topology agrees, 2) both
loop and external flavours agree and 3) both loop and external helicities agree. It is important
to stress that for one primitive with fixed helicity, no information can be reused. The cache
system starts first its work when one is dealing with either different permutations of primitive
amplitudes or with different helicity amplitudes (if, for example, an average over all helicities is
carried out). Take for instance a bubble cut with two trees: flipping one helicity in one tree does
not affect the other tree which can be recycled. Similar considerations apply to permutations
that affect only trees inside one cut: At any time, the other tree is left untouched and can be
reused. Note that we reuse only full tree amplitudes and no off-shell currents. Especially when
dealing with permutations, a cache that works on current level could be constructed. The book-
keeping for such an approach is however much more involved. As a consequence this possibility
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Figure 4. Accuracy distribution for the rational part of (qq + 6 g)-primitives for the mixed
quark-gluon loop (a) and the closed quark loop (b). The histograms plot the number of events
against the decadic logarithm of the relative accuracy (# of valid digits) between the result from
NGluon and the analytic formulae in [38] for all possible separations of the two external quark
legs.

Table 1. Runtime in milli seconds for primitives with one quark antiquark pair on an Intel(R)
Core(TM)2 Duo CPU E8400 @ 3.00GHz processor. While in the mixed quark-gluon loop the
runtime increases with larger qq-separation, the contrary is the case for the closed quark loop.

6-point example:

qq-separation 0 1 2 3 4

mixed quark-gluon loop 4.85 5.95 7.27 8.77 10.30
closed quark loop 6.13 2.61 0.72 0.01 0.01

8-point example:

qq-separation 0 1 2 3 4 5 6

mixed quark-gluon loop 19.84 22.08 23.81 27.35 30.54 34.13 38.07
closed quark loop 26.31 14.82 7.57 3.14 0.91 0.03 0.03

is not yet used in NGluon .
We have implemented the cache system via a binary tree which is part of the c++ standard

template library. Due to the internal index system, the cache is restricted to 13 external legs5

with six (different flavour) external quark pairs. The asymptotic behaviour is estimated via the
computation time of (n − 1)!/2 permutations of primitives. For low multiplicity (in our case
four point amplitudes), there is an overhead using such a system since the stored amplitudes are
usually only three-point or at most four point functions and very quickly evaluated. From five
external legs on until eight one gains speed up factors between 2 and 3. For higher multiplicities,
however, the amount of storage information is so large that the cache starts to slow down the

5 This is restricted to 6 legs on 32 bit machines
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computation compared to the direct evaluation without cache. It is expected that for the leading
colour approximation where far less primitives are needed, the performance of the cache is more
efficient.

5. Conclusions
NGluon is a publicly available program to compute primitive amplitudes with a fixed order of
external legs in pure gauge theory. We have shown the extension of the program to an arbitrary
number of external massless quarks: For a fixed order of helicity and flavour of the external
particles, the primitive amplitude is evaluated in a fully automatic way. As internal accuracy
check, we find that the “scaling test” gives reliable estimates. We have made several cross checks
with known results from the literature and find numerical agreement with our implementation.
An additional cache system which recycles tree amplitudes for the unitarity cut can lead to speed
up factors between two and three. First phenomenological applications are in preparation.
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