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From microsoft.com/en-us/windows7:
Why get Version 7?
• To simplify everyday tasks
• To work the way you want
• To do new things
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Automated Diagram Evaluation
Diagram Generation:
• Create the topologies
• Insert fields
• Apply the Feynman rules
• Paint the diagrams

Algebraic Simplification:
• Contract indices
• Calculate traces
• Reduce tensor integrals
• Introduce abbreviations

Numerical Evaluation:
• Convert Mathematica output to Fortran code
• Supply a driver program
• Implementation of the integrals

Symbolic manipulation
(Computer Algebra)
for the structural and
algebraic operations.

Compiled high-level
language (Fortran) for
the numerical evaluation.

FeynArts

Amplitudes

FormCalc

Fortran Code

LoopTools

|M|2 Cross-sections, Decay rates, . . .
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FeynArts

Find all distinct ways of connect-
ing incoming and outgoing lines

CreateTopologies

Topologies

Determine all allowed
combinations of fields

InsertFields

Draw the results
Paint

Diagrams

Apply the Feynman rules
CreateFeynAmp

Amplitudes
further
processing
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Algebraic Simplification

The amplitudes of CreateFeynAmp are in no good shape for
direct numerical evaluation.

A number of steps have to be done analytically:

• contract indices as far as possible,

• evaluate fermion traces,

• perform the tensor reduction,

• add local terms arising from D·(divergent integral)
(dim reg + dim red),

• simplify open fermion chains,

• simplify and compute the square of SU(N) structures,

• “compactify” the results as much as possible.
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FormCalc Internals

FormCalc
Mathematica

FORM
FeynArts

amplitudes

Analytical
results

Fortran

Generated Code
SquaredME
RenConst

Driver
programs

Utilities
library
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FormCalc 7

New Features:

• Analytic tensor reduction,

• Unitarity methods (OPP),

• Improved code generation,

• Command-line parameters for model initialization,
MSSM (SM) initialization via FeynHiggs.

Cuba:

• Built-in Parallelization available.
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Analytic Tensor Reduction

Work done in collaboration with S. Agrawal.

Passarino-Veltman reduction is still useful. So far:

• introduction of tensor coefficients in FormCalc, e.g.
Z

d4q
qµqν
D0D1

∼ Bµν = gµνB00 + pµpνB11

• complete reduction to scalars only numerically in
LoopTools.

Available now: Analytic Reduction in FormCalc.

CalcFeynAmp[..., PaVeReduce -> True]
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Analytic Tensor Reduction

Reduction formulas from Denner & Dittmaier, hep-ph/0509141.
Not straightforward to implement in FORM.

Apart from analytic considerations, this is useful e.g. for
low-energy observables, where small momentum transfer may
lead to numerical instabilities in numerical reduction, as in:

Bµ = pµB1 for p→ 0

Unless FormCalc finds a way to cancel it immediately, the
inverse Gram determinant appears wrapped in IGram in the
output, so is available for further modifications.
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Unitarity Methods

Work done in collaboration with E. Mirabella.

We employ the OPP (Ossola, Papadopoulos, Pittau) methods
as implemented in the two libraries CutTools and Samurai.

Instead of introducing tensor coefficients, the numerator is put
into a subroutine which is sampled by the OPP function, as in:

εµ1 ε
ν
2 Bµν(p,m2

1,m
2
2) = Bcut(2,N, p,m2

1,m
2
2)

where
N(qµ) = (ε1 · q) (ε2 · q)
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Unitarity Methods

So far tested on a handful of 2→ 2 and 2→ 3 processes, get
agreement to about 10 digits.

Performance somewhat wanting as of now,
Passarino–Veltman beats OPP hands down in the processes
we looked at.

Currently optimizing performance:

• Option to specify the N in N-point up to which
Passarino–Veltman is used, above OPP.

• Minimizing OPP calls to reduce sampling effort – work in
progress.

• Already looked into tweaking caching of loop integrals,
but pointless: lower-N integrals also needed by OPP.
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Numerical Evaluation in Fortran 77

user-level code included in FormCalc

generated code, “black box”

Cross-sections, Decay rates, Asymmetries . . .

SquaredME.F
master subroutine

abbr0_s.F

abbr0_angle.F
...





abbreviations
(invoked only
when necessary)

born.F

self.F
...





form factors

xsection.F
driver program

run.F
parameters for this run

process.h
process definition

main.F

CPU-time (rough)

compute abbrtree
}

5 %

compute abbr1-loop
}

95 %

computeMtree
}

.1 %

computeM1-loop
}

.1 %
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Code generation

Currently: Output in Fortran 77.
Code generator is rather sophisticated by now, e.g.

• Expressions too large for Fortran are split into parts, as in

var = part1

var = var + part2

...

• High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

• Many ancillary functions make code generation versatile
and highly automatable, such that the resulting code
needs few or no changes by hand.

T. Hahn, FormCalc 7 – p.12



Improvements in Code Generation

• Working on Output in C, makes integration into C/C++
codes easier and allows for GPU programming.

• Main subroutine SquaredME.F is now sectioned by
comments, to aid automated substitution e.g. with sed,
for example:

* BEGIN VARDECL

...

* END VARDECL

• Introduced data types Real and Complex for better
abstraction, can e.g. be changed to different precision.
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Command-line parameters for model initialization

Extension of command-line argument parsing:
run :arg1 :arg2 ... uuuu 0,1000

The ‘:’-arguments are passed to model initialization code.

Internal routines in xsection.F accordingly have additional
parameters argv, argc.
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Model Initialization through FeynHiggs

• model_fh.F uses FeynHiggs as Frontend for
FormCalc-generated code:

run :fhparameterfile :fhflags uuuu 0,1000

• FeynHiggs initializes MSSM (SM) parameters and passes
them to FormCalc code.

• No duplication of initialization code.

• Parameters consistent between Higgs-mass computation
and cross-section calculation.

• Needs FeynHiggs 2.8.1 or above.
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Cuba Parallelization

New version Cuba 3 features built-in parallelization:

• Just set environment variable CUBACORES to the number
of cores one wishes to utilize.

• Uses fork/wait, with back-communication of results
through pipes, thus no need to write reentrant integrand
function, works identically in Fortran and C/C++.

• Effective on multi-core machines only, no parallelization
across network.

• Only the sampling function is presently parallelized,
which is the optimal solution for Vegas and Suave, but
sub-optimal Divonne and Cuhre. Benchmarking and
optimization for the latter is work in progress.
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Summary

New Features in FormCalc 7: feynarts.de/formcalc

• Analytic tensor reduction in CalcFeynAmp,

• Unitarity (OPP) methods using either the Samurai or
CutTools library,

• Improved code generation,

• Command-line parameters for model initialization,

• Initialization of MSSM parameters via FeynHiggs.

Cuba: feynarts.de/cuba

• Built-in Parallelization available simply by setting an
environment variable.
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