

An improved Full Reconstruction tool utilizing NeuroBayes

ACAT 2011

M. Feindt, T. Kuhr, S. Neubauer, D. Zander, A. Zupanc | September 6th, 2011

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK, KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

Contents

- The Full Reconstruction
 - The Method
 - Use-cases

2 NeuroBayes

- Overview
- 3 Efficiency and Purity
 - Overview
 - Channels
- 4 Results
 - Tag Side
 - Signal Side
 - Reduced Channels
 - Summary

The Full Reconstruction method

- **B factories:** e^+e^- colliders with center of mass energy of $\sqrt{s} = 10.58$ GeV at the $\Upsilon(4S)$ resonance
- $\mathcal{B}(\Upsilon(4S) \rightarrow B\bar{B}) > 96\%$
 - $\mathbf{P} \Rightarrow p_{CMS}(B) + p_{CMS}(\bar{B}) + p_{CMS}(\text{Beam}) = 0$
 - \Rightarrow Clean event topologies (typically \sim 10 tracks)

The Full Reconstruction ••••• Daniel Zander - Full reconstruction NeuroBaves

Efficiency and Purity

Typical use-cases

0.8

12

4/34

The full reconstruction allows to measure missing momentum and additional energy.

Exemplary reconstruction of the tag side

B reconstruction: Important variables

$$M_{bc} \equiv \sqrt{E_{beam}^2 - p_B^2}$$

 $\Delta E \equiv E_{B\text{-meson}} - E_{\text{Beam}}$

The Full Reconstruction 00000 Daniel Zander – Full reconstruction NeuroBayes

Efficiency and Purity

Results

Exemplary reconstruction of the tag side

The Full Reconstruction 00000 Daniel Zander – Full reconstruction NeuroBayes

Efficiency and Purity

Results

Exemplary reconstruction of the tag side

Typical variables:

- Vertex fit information
- Kinematic Variables
- Particle ID information
- M_{bc} or ΔE

The Full Reconstruction 0000 Daniel Zander – Full reconstruction NeuroBayes

Full Reconstruction

This procedure is performed for hundreds of different channels

Efficiency and Purity

Results

September 6th, 2011

Contents

- The Full Reconstruction
 - The Method
 - Use-cases

- 3
- Efficiency and Purity
- Overview
- Channels
- 4 Results
 - Tag Side
 - Signal Side
 - Reduced Channels
 - Summary

NeuroBayes

 Multivariate analysis software combining a Neural Network with sophisticated pre-processing

The output of the Network can be interpreted as Bayesian probability

The Full Reconstruction

NeuroBayes

Efficiency and Purity

Results 000000000000

truction

September 6th, 2011

NeuroBayes - Pre-processing

Purity is taken and transformed to have mean 0 and width 1.

The Full Reconstruction

NeuroBayes ○●○○ Efficiency and Purity

Results

Daniel Zander – Full reconstruction

September 6th, 2011

NeuroBayes - Pre-processing

Input variables are decorrelated

Pre-processing ...

- Speeds up the training process
- Facilitates the weight finding
- Increases the robustness of the algorithm

September 6th, 2011

The Full Reconstruction 00000 Daniel Zander – Full reconstruction NeuroBayes

Efficiency and Purity

Results 000000000000

Probability

(Output of NeuroBayes+1)/2 is the signal probability by construction.

2) Signal to background ratio in training is **not** the same as on data

- It is often necessary to artificially enhance the signal component for the training.
- The output can be corrected:

$$o_{p} = rac{1}{1 + (rac{1}{o_{t}} - 1) rac{P_{p}(B)}{P_{p}(S)} rac{P_{l}(S)}{P_{l}(B)}}$$

The Full Reconstruction

NeuroBayes

Contents

- The Full Reconstruction
 - The Method
 - Use-cases

2 NeuroBayes

- Overview
- 3

Efficiency and Purity

- Overview
- Channels
- 4 Results
 - Tag Side
 - Signal Side
 - Reduced Channels
 - Summary

The Full Reconstruction

NeuroBayes

Efficiency and Purity

Results

September 6th, 2011

Efficiency and Purity

Two premises

- The more correct tag side B mesons, the more signal side B mesons are available for analysis.
 - \Rightarrow Need for good efficiency
- Provide a side and a side and a side a mesons, the more background pollutes the signal side.
 - \Rightarrow Need for good purity

The Full Reconstruction 00000 Daniel Zander – Full reconstruction NeuroBayes

Efficiency and Purity

F

Results

Channel		\mathcal{BR}	Channel		\mathcal{BR}
$B^+ \rightarrow$	$ar{D}^0\pi^+$	0.484%	$B^0 \rightarrow$	$D^{-}\pi^{+}$	0.268%
B^+ $ ightarrow$	$ar{D}^0\pi^+\pi^0$	1.340%	$B^0 \rightarrow$	$D^-\pi^+\pi^0$	0.760%
B^+ $ ightarrow$	$ar{D}^0\pi^+\pi^+\pi^-$	1.100%	$B^0 \rightarrow$	$D^-\pi^+\pi^+\pi^-$	0.800%
B^+ $ ightarrow$	$D_S^+ ar D^0$	1.000%	$B^0 \rightarrow$	$ar{D}^0\pi^0$	0.026%
B^+ $ ightarrow$	$ar{D}^{ar{0}*}\pi^+$	0.519%	$B^0 \rightarrow$	$D_S^+ D^-$	0.720%
B^+ $ ightarrow$	$ar{D}^{0*}\pi^+\pi^0$	0.980%	$B^0 \rightarrow$	$D^{*-}\pi^+$	0.276%
B^+ $ ightarrow$	$ar{D}^{0*}\pi^+\pi^+\pi^-$	1.030%	$B^0 \rightarrow$	$D^{*-}\pi^+\pi^0$	1.500%
B^+ $ ightarrow$	$ar{D}^{0*}\pi^+\pi^+\pi^-\pi^0$	1.800%	$B^0 \rightarrow$	$D^{*-}\pi^+\pi^+\pi^-$	0.700%
B^+ $ ightarrow$	$D_S^{+*}ar{D}^0$	0.760%	$B^0 \rightarrow$	$D^{*-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	1.760%
B^+ $ ightarrow$	$D_S^+ \overline{D}^{0*}$	0.820%	$B^0 \rightarrow$	$D_{S}^{+*}D^{-}$	0.740%
B^+ $ ightarrow$	$D_S^{+*}\overline{D}^{0*}$	1.710%	$B^0 \rightarrow$	$D_{S}^{+}D^{*-}$	0.800%
B^+ $ ightarrow$	$ar{D}^{ar{0}} K^+$	0.037%	$B^0 \rightarrow$	$D_{S}^{+*}D^{*-}$	1.770%
B^+ $ ightarrow$	$D^-\pi^+\pi^+$	0.107%	$B^0 \rightarrow$	$J/\psi K_S^0$	0.087%
B^+ $ ightarrow$	$J/\psi K^+$	0.101%	$B^0 \rightarrow$	$J/\psi K^+\pi^-$	0.120%
B^+ $ ightarrow$	$J/\psi K^+\pi^+\pi^-$	0.107%	$B^0 \rightarrow$	$J/\psi K^0_S \pi^+\pi^-$	0.100%
B^+ $ ightarrow$	$J/\psi K^+\pi^0$	0.047%			
B^+ $ ightarrow$	$J/\psi K^0_S \pi^+$	0.094%			

The Full Reconstruction

NeuroBayes

Efficiency and Purity

Results

Daniel Zander - Full reconstruction

Channel		\mathcal{BR}	Channel		\mathcal{BR}
$D^0 \rightarrow$	$K^{-}\pi^{+}$	3.89%	$D^+ \rightarrow$	$K^{-}\pi^{+}\pi^{+}$	9.40%
$D^0 o$	$K^-\pi^+\pi^+\pi^-$	8.09%	$D^+ \rightarrow$	$K^0_S\pi^+$	1.49%
$D^0 ightarrow $	$K^-\pi^+\pi^0$	6.90%	$D^+ \rightarrow$	$K^0_S\pi^+\pi^0$	6.90%
$D^0 ightarrow $	$\pi^+\pi^-$	0.14%	$D^+ \rightarrow$	$K^-\pi^+\pi^+\pi^0$	6.08%
$D^0 ightarrow $	$\pi^+\pi^-\pi^0$	1.44%	$D^+ \rightarrow$	$K^0_S\pi^+\pi^+\pi^-$	3.10%
$D^0 o$	$K_S^0 \pi^0$	1.22%	$D^+ \rightarrow$	$K^+K^-\pi^+$	0.98%
$D^0 o$	$K^{0}_{S}\pi^{+}\pi^{-}$	2.94%	$D^+ \rightarrow$	${\it K}^+{\it K}^-\pi^+\pi^0$	1.50%
$D^0 o$	$K^{0}_{S}\pi^{+}\pi^{-}\pi^{0}$	5.40%	$D^{+*} \rightarrow$	$D^0\pi^+$	67.70%
$D^0 o$	K^+K^-	0.39%	$D^{+*} \rightarrow$	$D^+\pi^0$	30.70%
$D^0 o$	$K^+K^-K^0_S$	0.47%			
$D^{0*} \rightarrow$	$D^0\pi^0$	61.9%	$D^{0*} \rightarrow$	$D^0\gamma$	38.10%
$D_S^+ \rightarrow$	$K^+K^0_S$	1.49%	$D_S^+ \rightarrow$	$K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-}$	0.88%
$D_{S}^{+} \rightarrow$	${\it K}^+\pi^+\pi^-$	0.69%	$D_{S}^{+} \rightarrow$	$\pi^+\pi^+\pi^-$	1.10%
$D_{S}^{+} \rightarrow$	$K^+K^-\pi^+$	5.50%	$D_{S}^{+*} \rightarrow$	$D_S^+\gamma$	94.20%
$D_{S}^{+} \rightarrow$	$K^+K^-\pi^+\pi^0$	5.60%	$J/\psi \rightarrow$	e ⁻ e ⁺	5.94%
$D_{S}^{+} \rightarrow$	${\it K}^+{\it K}^0_{S}\pi^+\pi^-$	0.96%	$J/\psi \rightarrow$	$\mu^-\mu^+$	5.93%
$D_{S}^{ ilde{+}} imes$	${\it K}^-{\it K}^0_{\cal S}\pi^+\pi^+$	1.64%			

The Full Reconstruction

NeuroBayes

Efficiency and Purity

Results

Daniel Zander - Full reconstruction

Channels		\mathcal{BR}	Channels		\mathcal{BR}	Channels		\mathcal{BR}
D^+	7	29.4%	D*+	2	98.4%	B^+	17	12.0%
D^0	10	37.9%	D*0	2	100.0%	B^0	15	10.4%
D_S^+	8	17.9%	D_S^{*+}	1	94.2%			
J/Ψ	2	11.9%						

Exclusive reconstruction of **1104 decay channels** and code maintenance would be a futile task.

The Full Reconstruction

NeuroBayes

Efficiency and Purity

Results

Daniel Zander - Full reconstruction

Intermediate Cuts

How to make the smartest cuts possible?

• How do you compare $D^0 \to K^- \pi^+$ to $D^0 \to K^0_S \pi^+ \pi^- \pi^0$?

• Even worse: The cut depends on the next level: The D^0 meson in $B^+ \to \overline{D}{}^0 \pi^+ \pi^+ \pi^-$ should get a different cut than in $B^+ \to \overline{D}{}^0 \pi^+$.

• **Solution:** Multiply the signal probability (given by the NeuroBayes training) of all children and use that to cut.

Cut decisions are postponed to a later level

Not only the reconstruction is **hierarchical**, but also the **information flow**.

The Full Reconstruction

Daniel Zander - Full reconstruction

NeuroBayes

Efficiency and Purity

Results

Pre-cuts

Cut on the product of the signal probabilities (= NeuroBayes outputs) of the children.

- Choose a cut to have roughly the same slope for all curves.
- This slope corresponds to the number of candidates.
- Very soft cuts, usage of probability product on next level.
- Trade-off: Efficiency ↔ Purity and CPU time.

Daniel Zander – Full reconstruction

NeuroBayes

Efficiency and Purity

Results

Contents

- The Full Reconstruction
 - The Method
 - Use-cases

2 NeuroBayes

- Overview
- 3 Efficiency and Purity
 - Overview
 - Channels

Results

- Tag Side
- Signal Side
- Reduced Channels
- Summary

Usage

- Run the Full Reconstruction on your data set
- The "fullrecon table" is added to certain events of your data set (Belle specific)
- Choose your candidate

ID TAG_ID DECAYDDEC(1)DDEC(2)DDEC(3)DDEC(4) NBRANK NBOUTCONT_NBCONT_NB MCINFO DELTAE MBC NFS BREC	
1 521 521743 421421 0 0 0 2 0.09 0 0.00 -2 -0.09 5.29 7 1	
2 -521-521743 421421 0 0 0 3 0.01 0 0.00 -2 0.06 5.26 7 13	
$3 \ -521 - 521743 \ 421421 \ 0 \ 0 \ 0 \ 1 \ 0.25 \ 0 \ 0.00 \ 1 \ -0.09 \ 5.28 \ 7 \ 25$	

The Full Reconstruction

NeuroBayes

Efficiency and Purity

Results

Daniel Zander – Full reconstruction

Results

What is the result of the Full Reconstruction?

- A collection of B_{tag} candidates
- Visualisation of results: beam constrained mass M_{bc}

$$M_{bc}\equiv\sqrt{E_{beam}^2-p_B^2}$$

Any basis for comparison?

• Yes! The cut-based predecessor to this Full Reconstruction.

The Full Reconstruction

NeuroBayes

Efficiency and Purity

NeuroBayes Full Reconstruction Decay ALL = 209915 +- 3065. Peak = 44732 +- 5441. Bkg = 863010 +- 28604Opt = 1) Mbc>5.27: P = 43.3%, S*S/(S+B) = 89733.6 5.27 \$ 275 mbc (GeV) sig: 210,000 ba: 860.000 pur: 43.3 % Decay ALL 176150 +- 2973. Peak = 38803 +- 5524. Bkg = 1022743 +-3059 (Opt = 1) Mbc>5.27: P = 36.0%. S*S/(S+B) = 62809.1

5.285 5 245 5 25 5.255 5.26 5.265 5.27 5.275 5.28 sia: 176.000 ba: 1.000.000 pur: 36.0 %

The Full Reconstruction

NeuroBaves

Efficiency and Purity

Results September 6th, 2011 26/34

Purity-Efficiency of B_{tag} Sample

Purity-Efficiency

Classification of B⁺ mesons, cut on the signal probability

The Full Reconstruction

NeuroBayes

Efficiency and Purity

Purity-Efficiency of B_{tag} Sample

Purity-Efficiency

Classification of B⁰ mesons, cut on the signal probability

The Full Reconstruction

NeuroBayes

Efficiency and Purity

Signal Side

Exemplary signal side reconstruction: $B^0 \rightarrow D^{*-} l^+ \nu_l$

Comparison between the cut based (left) and the NeuroBayes (right) Full Reconstruction.

The Full Reconstruction 00000 Daniel Zander – Full reconstruction NeuroBayes

Efficiency and Purity

Reduced Channels

The question has popped up:

"How much of the improvement is due to new channels and how much due to NeuroBayes?"

Hard to answer, as the two aspects are connected.

Approximation: Only use channels that are common to both Full Reconstructions.

The Full Reconstruction 00000 Daniel Zander – Full reconstruction NeuroBayes

Efficiency and Purity

Reduced Channels B⁰

old: All shared B0 modes combined

ekp: All shared B0 modes combined

 $\label{eq:still} \begin{array}{l} \mbox{Still a factor} \sim 1.5 \mbox{ improvement} \\ \mbox{Tag side for only common channels for the cut based (left) and the NeuroBayes (right)} \\ \mbox{Full Reconstruction.} \end{array}$

The Full Reconstruction

NeuroBayes

Efficiency and Purity

Reduced Channels B⁺

old: All shared B+ modes combined

ekp: All shared B+ modes combined

 $\label{eq:still} \begin{array}{l} \mbox{Still a factor} \sim 1.6 \mbox{ improvement} \\ \mbox{Tag side for only common channels for the cut based (left) and the NeuroBayes (right)} \\ \mbox{Full Reconstruction.} \end{array}$

The Full Reconstruction

NeuroBayes

Efficiency and Purity

Results September 6th, 2011 32/34

I reconstruction

Summary and Conclusion

- The Full Reconstruction allows to **measure missing momentum** and is therefore **crucial for numerous analyses**.
- NeuroBayes and a hierarchical information flow ⇒ improvement of factor ~ 2.
- Corresponds to 10 years of data taking.

The Full Reconstruction 00000 Daniel Zander – Full reconstruction NeuroBayes

Efficiency and Purity

Results 0000000000000 September 6th, 2011 33/34

Publication

A hierarchical NeuroBayes-based algorithm for full reconstruction of B mesons at B factories

M. Feindt, F. Keller, M. Kreps¹, T. Kuhr, S. Neubauer^{*}, D. Zander, A. Zupanc Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, Campus Süd, Postfach 69 80, 76128 Karlsruhe, Germany

http://www.sciencedirect.com/science/article/pii/ S0168900211011193 available online 16 June 2011, ISSN 0168-9002, DOI: 10.1016/j.nima.2011.06.008.

The Full Reconstruction

NeuroBayes

Efficiency and Purity

Results 00000000 September 6th, 2011 34/