
A Validation System for Data Preservation in HEP

Yves Kemp1, Marco Strutz2, Hermann Hessling2

1DESY, Notkestrasse 85, D-22607 Hamburg
2HTW Berlin, Wilhelminenhofstrasse 75A, D-12459 Berlin

E-mail: yves.kemp@desy.de

Abstract. Preserving data from past experiments and preserving the ability to perform
analysis with old data is of growing importance in many domains of science, including High
Energy Physics (HEP). A study group on this issue, DPHEP, has been established in this
field to provide guidelines and a structure for international collaboration on data preservation
projects in HEP.

This contribution presents a framework that allows experimentalists to validate their
software against a previously defined set of tests in an automated way. The framework has
been designed with a special focus for longevity, as it makes use of open protocols, has a
modular design and is based on simple communication mechanisms. On the fabrics side, tests
are carried out in a virtual environment using a cloud infrastructure. Within the framework,
it is easy to run validation tests on different hardware platforms, or different major or minor
versions of operating systems. Experts from IT or the experiments can automatically detect
failures in the test procedure by the help of reporting tools. Hence, appropriate actions can be
taken in a timely manner. The design and important implementation aspects of the framework
are shown and first experiences from early–bird–users will be presented.

1. Introduction
Data preservation is a topic of increasing importance. This is true in general for any scientific
data in the digital era, and it is especially true for High Energy Physics data. This has been
recognized by ICFA, the International Committee for Future Accelerator, as they endorse since
August 2009 the “Study Group for Data Preservation and Long Term Analysis in High Energy
Physics”, DPHEP[1]. As the DPHEP initiative is presented elsewhere in these proceedings, we
simply summarize the main objectives of the initiative:

• Review and document the physics objectives of the data persistency in HEP.
• Exchange information concerning the analysis model: abstraction, software, documentation

etc. and identify coherence points.
• Address the hardware and software persistency status.
• Review possible funding programs and other related international initiatives.
• Converge to a common set of specifications in a document that will constitute the basis for

future collaborations.

In the context of the DPHEP initiative, many different aspects of data preservation and adjacent
topics are discussed[2, 3]. In this contribution, we focus on the question how to preserve best
the ability for performing analysis on preserved data. We start with some general considerations

from the perspective of the HERA experiments at DESY and, then, present a framework for
preserving software developed at DESY.

2. Conserving analysis capability
When faced with the question “How long should we be able to analyze old data?”, a universal
answer cannot be given. There are of course scientific rules imposed by Science bodies or
journals, but these are usually rather lose, do not specify the detail level of reproducibility, do
not ask for new analyses to be done with old data, and sometimes do not extend to more than
five years. In discussions among different experiments, we can find two categories:

• Experiments for which a superseding experiment is on the horizon
• Experiments for which no superseding experiment is on the horizon.

It is clear that in the first case, the interest in long term analysis is reduced: Often people
want to be able to analyze data of their old experiment until new and potentially better data is
available from the new experiment. Eventually, comparisons will be made between old and new
data, but after some period of overlap, the old data and its analysis is felt obsolete.
In the second case, long term analysis is crucial: The collected dataset is unique, it should be
preserved as well as the knowledge how to analyze it – potentially for eternity. This is clearly
the case for the HERA data: No e−p or e+p collider is currently running and there are no serious
dicussions for planning such a collider. Probably the most tangible plan would be LHeC, for
which a “Conceptual Design Report” is being written.
It is, therefore, clear that the strategy for HERA concerning analysis preservation must differ
from other experiments.
We propose an analogy with the real world: “Pizza preservation”.

2.1. Discussion strategies: “Pizza preservation”
If the task is to preserve a pizza, the timeline plays a role. If we want to preserve it for a short
time (in this case, some days up to some months), a freezer or deep freezer is a solution known
to work. For example, the BaBar collaboration has set up an elaborated system for archival,
more details can be found in several presentations[4].
If the task is to preserve a pizza for a longer time, conserving the pizza as a material entity is not
a good solution. The timescale is simply too long to ensure integrity and constance of the result.
Instead, it is advisable to preserve the recipe of the pizza. To ensure integrity and constance, it
is important to bake the same pizza repeatedly, check for deviations - and potentially fix them.
Along this line, we would propose a similar scheme for preserving the HERA software:
Experiments would not preserve ready–made executables or OS images, but rather recipes how
to get to these. Together with this recipe, one or more test suites would be provided that would
check the integrity of the result.
All this would be build against the newest OS flavors or other dependencies. The build and test
process would be performed automatically at regular intervals. In case of problems occurring at
any step, expert intervention would be triggered in a timely manner for a single problem.
We will shortly discuss the advantages (+) and disadvantages(−) of such an approach, compared
to a scenario in which software is not compiled and OS images are frozen. These issues are
discussed in more details elsewhere[5].

− At first glance, the continuous rebuilding looks like a higher effort. It clearly is in
the beginning, if the experiment does not already have an automated build and testing
infrastructure. If there is, the task would be to maintain this infrastructure after the end
of the active analysis period. An experiment-independent framework maintained elsewhere
(e.g. in an IT department) would be helpful

− Some kind of organization would still be necessary even after the end of the collaboration:
Experts needs to be named that are able to address potentially occurring problems.

+ Runability and correctness of the code is guaranteed at any given moment.
+ Changes between each test run are small if the frequency is high enough. This eases problem

finding.
+ Necessary changes are potentially small.
+ As the software ”lives”, adaptations to new technologies (network, protocols, data analysis,

MC generators, ...) can be made with reasonable effort.

2.2. Towards a DESY wide solution: A Generic Recipe
We have tried to identify a basic, generic recipe for all steps of the different HERA experiments–
the atomic life–cycle of a validation test. This comprises six steps that involve either IT or
experiments at some stage. Based on this, we have designed and implemented a framework in
which such steps can be executed [6].

3. The Generic Recipe
3.1. Concept and Design
The prototype of our software preservation system is based on some general concepts. The
modular design of the framework allows to replace components easily and to add new components
to extend the functionality. New and unforeseen requirements by future environments may be
included by minor changes of the structure of the code. Each configuration is formatted in plain
text, human readable and self-explaining. This ensures longevity of the information both for
operators and users. Open standards are preferred against proprietary ones. The communication
between the components is mostly based on HTTP.

Data preservation covers a broad view of different fields. The focus is set rather on the
software layer than on data archival or access. The standard Open Archival Information System
(OAIS) [8] provides a general reference model for long–term preservation of digital data. It is
identical to ISO 14721:2003. Our prototype is OAIS oriented but not OAIS conform as the
standard has shortcomings with respect to software preservation and validation.

The validation system is composed of six different components as summarized in Fig. 3.1.

o The controller is the central component and manges all other components of our software
preservation system. Incoming messages are processed and generate new events or tasks
which, then, are transmitted to appropriate other components.

o The ingest manager executes all necessary steps needed to integrate a new test collection
into the system. It extends a test specification with additional information, downloads
external software packages and stores previous test collections.

o Most parts of the tests are executed inside virtual machines. The workflow engine
provides mechanisms for mapping a life–cycle (see Fig. 3.1) inside a virtual machine.

o IaaS cloud service. The Infrastructure as a Service (IaaS) provider is responsible
for managing and hosting virtual machines that can be instantiated dynamically and
automatically for the software preservation system. Therefore, it is crucial to define a set of
common interfaces being provided by the IaaS system. Providers of cloud computing differ
from each other concerning the offered interfaces and protocols. Using only one of these
interfaces may lead to a problematic dependency. In our prototype only open interfaces are
used which are already standardized or at least well established such as the Open Cloud
Computing Interface (OCCI[9]) driven by the Open Grid Forum[12]. OCCI is used as a
protocol and as an API for any management tasks where the focus is set on portability,
integration, innovation and interoperability.

Figure 1. Components and their communication protocols.

o The cloud infrastructure manager comprises all feature related to IaaS interaction with
the software preservation system. It is a management layer between controller and IaaS
cloud service which decouples specific cloud protocols or function from the controller. This
enables an exchange of the cloud service without touching the controller but requires only
a modification in the cloud infrastructure manager itself.

o The report manager provides statistics and reports about test runs and the software
preservation system itself. The output can be rendered as a JSON message or presented as
HTML.

During the life–cycle of the system different types of resources such as virtual machines,
software packages, scripts, system state values, log–files, test results, configuration files and test
packages are created. Most of them are used by different components and during different time
periods. Some need to be available only temporarily while others must be stored permanently.
Our prototype uses Mercurial[11] as a source code management system and SQLite[10] as a
database management system. The configuration data are stored in an ext3 file system.

A major pillar of the software preservation system is the integration of vitalization and cloud
services to enable continuous testing of software packages. OpenNebula [7] is used for providing
a cloud infrastructure as a service (IaaS). It can easily be adapted to special needs and is
open–source.

Each operation accessing the cloud, for instance if a virtual machine image is requested, is
handled at first by the controller. It receives messages and creates new actions. This may
result in sending requests to the cloud–infrastructure manager. The cloud service is hidden
from other components since only the controller is allowed to communicate with the cloud–
infrastructure manager. OpenNebula can easily be replaced by a different cloud system, only
the cloud–infrastructure manager needs to be modified.

3.2. Prototype Implementation
Each test collection consists of a set of configuration files. They are collected in a tar–gzip
archive and sent to the software preservation system via a HTTP–POST request.

Figure 2. Life–cycle of a validation test. The responsibilities for the individual steps are
separated between the IT group and the users.

The JavaScript Object Notation (JSON) is used as common notation for all configuration
files. The basic idea is to use only key–value pairs, each element has the datatype string. By this
structure it is not difficult to interpret the content in other programming languages. Additionally
the key–value notation is easily extendable. New attributes can be added without affecting with
the old ones.

o software.txt
This file describes the analysis software to be validated by the software preservation system.
The key archive characterizes a single archive that contains the full analysis software. If the
software needs to be compiled the key builder describes the file that can be used for building
the software. The key executable represents a script executing the analysis software. Both
builder and executable have to be part of the compressed software archive.

o validator.txt
Validator is a program that can validate results of an analysis software. The result and log
files of an analysis software are passed to the validator which then returns the test result,
for instance SUCCESS or FAIL.

o rpm.txt
This file contains a list of key–value pairs describing the packages the analysis software is
depending on. For example, the key zip may be the name of a package and its metadata
are stored as a value. The package name must be available for the package manager which
is installed in the virtual machine template. For each virtual machine package managers
are defined in their metadata.

o vm.txt
Details about the virtual machine used to run the analysis software on, are stored here. The
software preservation system provides a list of virtual machine templates. Each template
can be contextualized and instantiated.

Figure 3. Monitoring.

o contextualization.txt
Each test has different requirements, therefore virtual machines must be prepared
individually to fit the needs. In the current system this is achieved by the contextualization
mechanisms of OpenNebula. The first time a virtual machines boots a shell script is
executed to prepare the system (e.g. init.sh).

o configuration.txt
All remaining information about the test collection are part of this configuration file.

As soon as a valid archive is created it can be registered to the software preservation system
by sending a HTTP–POST request to a webservice, for example via the command-line tool curl.
Then, the software preservation system provides a reference number, the TESTCOLLECTION
UUID. This id is then used to trigger a test run for the referenced test collection which will
generate a new TESTRUN UUID.

The execution of each test step produces a log file. A user can download these files by sending
an HTTP–GET request to the software preservation system, specify an id for the test and its test
run as illustrated by Fig. 3.2. Furthermore the software preservation system provides graphical
reports that can be rendered by a web browser as indicated at the bottom of Fig. 3.2.

Simulation /
Reconstruction
 Fortran

Analysis
Software
 h1oo

re
qu

ire
s

ROOT

FastJet

Neurobayes

...

data base
snapshot

h1oo
snapshot

create

create

create tar balls
of H1 sw

Fortran Executables

h1oo Executables

outside within
sp-system

Physics Analyses

~5x

~40x

~10x

Event Display

HAT/µODS
 dst2all

DST production
 h1simrec

1996

2007

1996

2007

all periods

 all periods

10-20x
10-20x

MC generators
 to come

Compilation of
MC generators

to come

Common
storage

H1
repository

currently cvs

needs access to
running VM

Figure 4. An example of complex workflows within the compilation, running and testing
procedure and their interdependencies. (courtesy Michael Steder, H1).

4. Experiences with the Generic Recipe and the prototype implementation
HERA users have generally well received the idea of keeping all or parts of their code alive.
Some concern has been raised that migrating to newer operating systems might be difficult or
impossible in the future. The framework could also be used to test binaries compiled on an
old OS which are executed in an new OS. This is sometimes possible to some extend using
compatibility libraries.
Users have started writing build, run and evaluation scripts in parallel to the prototype
implementation. At a rather late stage of the implementation, these scripts were run on the
system. We identify two main lessons:

(i) Users tend to recreate the environment they are used elsewhere. It seems to be more work
to disentangle the dependencies against e.g. AFS and software being available there then
to recreate such environments. We think that for the long term success of the system, users
must be helped in understanding such dependencies and solving them in a clear way.

(ii) It has turned out that the workflows of the experiments are more complicated than initially
thought and need information exchange between different test scenarios. It is for example
envisageable to separate the compilation of the whole framework into smaller pieces (e.g.
modules) which are also tested independently. Some modules might however depend on
the compilation of previous modules, so the modules from previous compilations should be
available in the framework. Figure 4 shows a sketch of the H1 plans for such a structure.

This was not foreseen in the initial design. Any implementation that would go into real
production should be able to handle such scenarios.

5. Conclusion and Outlook
In this contribution, we discuss different scenarios of preserving the ability to analyze data.
We have successfully planned and implemented a proof of concept of one scenario, which allows
physicists to constantly and automatically validate their code and help migrating to new OS or
hardware.
Experience of HERA physicists working with this prototype has shown that it is useful to some
extend for them. It has turned out that their workflows are more complex that initially thought.
All of the steps – compilation, running, testing – should be divided into smaller sub–steps with
inter–dependencies.
To achieve production readiness, more resources and work are needed to plan and implement a
framework which is aware of such complex workflows and inter–dependencies.

References
[1] ICFA Study Group on Data Preservation and Long Term Analysis in High Energy Physics:

http://www.dphep.org

[2] DPHEP Study Group: Data Preservation in High Energy Physics: arXiv:0912.0255 [hep-ex] (2009).
[3] South, David: Data Preservation in High Energy Physics, CHEP 2010, arXiv:1101.3186v1 [hep-ex]
[4] Neal, Homer and Cartaro, Tina: Data Preservation at BaBar/SLAC, Presentations at the 5th DPHEP Work-

shop, FNAL 2011. Conference page: http://indico.cern.ch/conferenceDisplay.py?confId=116485

[5] Kemp, Yves: Use of Virtualization Techniques for data preservation and long term analysis. DPHEP workshop
DESY 2009.
http://www.dphep.org/sites/site_dphep/content/e20/e36625/e43750/dlpta.pdf

[6] Strutz, Marco: Virtualisation Technologies and Cloud Computing in Data Preservation for High Energy
Physics. Master’s thesis, Berlin University of Applied Sciences (HTW), Berlin (2011).

[7] OpenNebula: Open Source Toolkit for Cloud Computing. http://opennebula.org
[8] Iso 14721:2003, Space data and information transfer systems - open archival information system - reference

model. OAIS, 2003.
[9] OCCI, Open Cloud Computing Interface. http://occi-wg.org/
[10] SQlite: A SQL database engine. http://www.sqlite.org/
[11] Mercurial - A Distributed Source Control Management Tool. http://mercurial.selenic.com/
[12] OGF - Open Grid Forum. http://www.ogf.org/

