
A population-based approah to bakgrounddisrimination in partile physisFederio ColehiaDepartment of Physis and Astronomy, University College London, Gower Street, LondonWC1E 6BT, UNITED KINGDOMNow at Brunel University, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UNITEDKINGDOME-mail: federio.olehia�brunel.a.ukAbstrat. Bakground properties in experimental partile physis are typially estimatedfrom ontrol samples orresponding to large numbers of events. This an provide preiseknowledge of average bakground distributions, but typially does not take into aountstatistial �utuations in a data set of interest. A novel approah based on mixture modeldeomposition is presented, as a way to extrat additional information about statistial�utuations from a given data set with a view to improving on knowledge of bakgrounddistributions obtained from ontrol samples. Events are treated as heterogeneous populationsomprising partiles originating from di�erent proesses, and individual partiles are mappedto a proess of interest on a probabilisti basis. The proposed approah makes it possibleto estimate features of the bakground distributions from the data, and to extrat informationabout statistial �utuations that would otherwise be lost using traditional supervised lassi�erstrained on high-statistis ontrol samples. A feasibility study on Monte Carlo is presented,together with a omparison with existing tehniques. Finally, the prospets for the developmentof tools for intensive o�ine analysis of individual interesting events at the Large Hadron Colliderare disussed.1. IntrodutionBakground disrimination in partile physis is usually performed by identi�ng events thatare more likely to ontain a physis proess of interest, the primary goal being rejetion ofontributions from uninteresting proesses that mimi the signal and thus make its extrationand measurement more ompliated. Traditional approahes ahieve this goal by foussing onentire events, omparing kinemati and topologial properties with referene distributions usuallyobtained from ontrol samples.This artile presents a novel approah that builds on a population-based view of partilephysis events, whih are treated as mixtures of subpopulations omprising partiles originatingfrom di�erent physis proesses suh as a hard sattering of interest as opposed to bakground.The main goal is to deompose an input data set by assigning individual partiles a probabilityfor them to originate from a given proess based on partile-level information.This is ahieved by adapting and applying mixture deomposition tehniques [1℄ that arewell established in statistis and that have been used in other disiplines to solve formally-similar problems. In this formulation, events are treated as heterogeneous statistial populationsomprising partiles whose kinematis re�ets the proess they originated from.



This ontribution desribes an initial investigation of the possibility to use mixture modeldeomposition tehniques for bakground disrimination at the Large Hadron Collider (LHC).The study is based on a sampling algorithm inspired by the Gibbs sampler [2℄ and by ExpetationMaximization (EM) [3℄ whose goal is to deompose an input data set into olletions of partilesoriginating from a hard sattering of interest as opposed to bakground, mapping individualpartiles to signal or bakground on a probabilisti basis. A number of well-established methodsand results set a ontext for this investigation in addition to the Gibbs sampler and to EM, namely(i) other simulation-based methods suh as [4℄, (ii) a more general use of Markov Chain MonteCarlo (MCMC) tehniques, reently applied to the study of the Cosmi Mirowave Bakgroundradiation [5℄, (iii) a reent renewed interest in Bayesian numerial methods for data analysisin partile physis [6℄ [7℄ [8℄, in addition to (iv) the use of MCMC with referene to spei�optimization problems in the �eld [9℄.In this study, the proposed sampling algorithm was used to lassify individual partiles intosignal and bakground. Results obtained on a olletion of ∼ 600 simulated partiles from ahard sattering and from bakground are presented and disussed in this artile, together withross-heks on toy Monte Carlo as desribed in the appendix.In general, di�erent events in partile physis an look very di�erent from one another evenwhen the underlying physis proesses are the same, and statistial �utuations an be non-negligible in low-statistis data sets. When lassi�ation is performed using traditional supervisedalgorithms, �utuations are usually not taken into aount, sine training typially relies onhigh-statistis ontrol samples. On the other hand, the algorithm presented in this artile anestimate properties of signal and bakground probability density funtions (PDFs) from thedata: in priniple, this makes it possible to use information obtained from a data set of interestto improve on the desription of bakground PDFs obtained from ontrol samples, whih do notnormally take statistial �utuations into aount.From a broader perspetive, this ontribution illustrates a new population-based approahthat aims to improve on the desription of bakground PDFs obtained from a high-statistisontrol sample by using information about statistial �utuations extrated from a lower-statistis data set: this is done by assigning individual partiles a probability for them to originatefrom signal or bakground, i.e. by deomposing an input olletion of partiles into signal andbakground-assoiated subpopulations.2. The sampling algorithmThis approah to bakground disrimination is presented with referene to the general problemof deomposing a olletion of partiles from high-energy partile ollisions into subpopulationsassoiated with di�erent underlying physis proesses and desribed in terms of di�erent PDFs.The input data set onsists of a mixture of partiles, some of whih originated from a hardsattering of interest, others from bakground. Provided that the orresponding subpopulationsan be haraterized su�iently well in terms of their kinemati or topologial properties, it is inpriniple possible to ask, for eah partile, what the probability is for it to originate from signalas opposed to bakground. In partiular, the proposed algorithm estimates suh probabilities byiteratively sampling from subpopulation PDFs.As opposed to lassial mixture models, whih typially rely on a parametri formulationrequiring the shapes of the subpopulation PDFs to be known a priori, our formulation is basedon a more general mixture of the form
K∑

j=1

αjfj(x) (1)where the PDFs fj satisfy a set of onstraints assoiated with a histogram regularization



proedure as outlined in setion 3. Subpopulation frations αj (�mixture weights") are requiredto sum to unity, i.e. ∑K
j=1 αj = 1.The variable x an orrespond to partile pseudorapidity η, a kinemati variable related tothe partile polar angle θ in the laboratory frame in terms of η = −ln(tanθ/2), or pT i.e. thetransverse momentum of the partile with respet to the beam diretion. The subpopulationPDFs fj are de�ned in terms of regularized histograms of x, as desribed in setion 3, where theassoiated onstraints imposed on the PDFs are detailed. The symbol ϕj will be used to denotethe estimate of the generi subpopulation PDF fj throughout the text.The hoie of (1) was driven by our previous studies, where assuming a prede�ned PDFfuntional form led to signi�ant bias on mixture weight estimates. That bias ultimately relatedto assuming that PDFs obtained from high-statistis ontrol samples were also appropriate todesribe the orresponding probability distributions in a lower-statistis data set. However,statistial �utuations are sometimes appreiable, and for this reason it is neessary for themodel to provide more �exibility if �utuations in the data set of interest are to be desribed.While a rigorous treatment may all for the use of nonparametri Bayesian methods [10℄, whihan be used to provide an additional dimension of �exibility to statistial models, it was deidedto adopt a simpli�ed intuition-driven approah for this study, in order to avoid introduingadditional ompliations not related to the algorithm itself in this phase of the development.The histogram regularization proedure desribed in setion 3 an be seen as a simpli�edversion of established methods suh as Tikhonov regularization [11℄, whih an be used to imposesmoothness onstraints to a likelihood maximization problem. From a oneptual point of view,an alternative way of interpreting the model used in this study is as a simpli�ed version ofestablished kernel or wavelet-based tehniques, where regularized histograms e�etively play therole of a set of basis funtions. In the absene of any onstraints to the PDFs in the mixture,the statistial model (1) would instead not be well de�ned, so this is an essential ingredient.Additional remarks about existene and uniqueness of a stationary distribution for the MarkovChain assoiated with the algorithm in the on�guration used for this study will be provided insetion 3 after the disussion of the Monte Carlo analysis.Given the mixture of probability distributions (1) and a set of observations {xi}i=1,...,N , theproblem of lustering the latter into K groups by probabilistially assoiating eah of themwith a distribution of origin has been solved numerially in a Bayesian framework using MCMCtehniques. In partiular, the Gibbs sampler [1℄, whih diretly inspired this work, has been usedfor this purpose in di�erent disiplines.The basi pseudoode of the proposed sampling algorithm is reported below. The value ofvariable v at iteration t is indiated with v(t) throughout.(i) Initialization: Choose α(0) = {α(0)

j }j and f
(0)
j =ϕ

(0)
j , j = 1, ...,K as desribed in setion 3.(ii) Iteration t:(a) Generate the alloation variables z

(t)
ij , i = 1, ..., N , j = 1, ...,K based on probabilities

P (z
(t)
ij = 1|α(t−1)

j , ϕ
(t−1)
j , xi) proportional to α

(t−1)
j f(xi|ϕ(t−1)

j ). The quantity z
(t)
ij equals1 when observation i is mapped to distribution j at iteration t, and 0 otherwise. Ingeneral, the variables z

(t)
ij depend both on the mixture weights αj and on the estimates

ϕj of the subpopulation PDFs from the previous iteration.(b) Generate α(t) from the probability density funtion of α given z(t−1) = {z(t−1)
ij }ij ,

ρ(α|z(t−1)). Knowledge of whih partiles are mapped to proess j at iteration t − 1makes it possible to generate the subpopulation frations α at iteration t.() Obtain an updated estimate of the subpopulation PDFs from the data x based onknowledge of whih partiles are mapped to subpopulation j at iteration t− 1. Detailsare provided in setion 3.



A spei� hoie for the funtion ρ and a way to obtain updated estimates of the subpopulationPDFs fj are desribed in setion 3 with referene to the Monte Carlo study.The entral idea of the algorithm is the following: the better the observations {xi}i aremapped to the subpopulations j = 1, ...,K, the more aurate the estimates of ρ(α|z) and ofthe subpopulation PDFs ϕj . One some orret values of zij are found, ρ(α|z) and ϕj begin toroughly re�et the orret distributions, whih in turn leads to additional orret mappings zijto be found at subsequent iterations.The above pseudoode orresponds exatly to the Gibbs sampler, where updated estimates ofsubpopulation PDFs are obtained at eah iteration, as indiated at step (). On the other hand,when step () is removed from the pseudoode, partiles are mapped to signal and bakgroundbased on the subpopulation PDFs provided at initialization, and the algorithm is then moreakin to EM. Throughout the paper we will refer to the two versions of the algorithm with step() inluded or not in the pseudoode as �unonstrained sampler" and �onstrained sampler",respetively.The primary objetive of this artile is to study the use of the proposed sampling tehniquein di�erent on�gurations in order to:(i) Obtain estimates ϕj of the subpopulation PDFs from the input data set.(ii) Estimate the subpopulation weights αj. In the ontext of this study, this orresponds toestimating the frations of bakground and signal partiles ontained in the input data set.(iii) Assign individual partiles a probability for them to originate from a given proess basedon the subpopulation PDFs estimated at step (i) as opposed to relying exlusively on high-statistis templates. In the ontext of this study, this allows lassi�ation of individualpartiles into signal and bakground.3. Monte Carlo studyThe algorithm was applied to a Monte Carlo data set generated using Pythia 8.140 [12℄ [13℄,obtained superimposing gg → tt̄ signal events from pp interations at √s = 14 TeV to soft QCDinterations, so alled Minimum Bias events, in order to simulate bakground. The signal proesswas hosen in order to illustrate the use of the algorithm for bakground disrimination at thepartile level. Further studies will be needed in order to extend these results beyond the initialinvestigation presented in this artile, and to assess the potential of population-based tehniquesfor bakground disrimination in the ontext of spei� analyses at the LHC.The sampler was run over a olletion of harged partiles with 2 GeV/ < pT < 5 GeV/,and individual partiles were assigned a probability for them to originate from signal as opposedto bakground based on their η and pT values.The pseudoode of the algorithm used for this appliation is shown below. Subsripts sig and
bkg relate to signal and bakground, respetively.(i) Initialization: Set αbkg = α

(0)
bkg = 0.5, fj = ϕ

(0)
j . Initial onditions for the estimates ϕ

(0)
jof the subpopulation PDFs f

(0)
j are given by regularized η and pT distributions from thehigh-statistis ontrol sample, as desribed in setion 3.1.(ii) Iteration t:(a) Generate z

(t)
ij for all partiles (i = 1, ..., N) and distributions (j = 1, 2 orrespondingto bakground and signal, respetively) aording to P (z

(t)
ij = 1|α(t−1)

j , ϕ
(t−1)
j , xi) ∝

α
(t−1)
j fj(xi|ϕ(t−1)

j ), where α1 = αbkg, α2 = 1 − αbkg.(b) Set α
(t)
j =

∑
i z

(t−1)
ij /N , ∀j. This orresponds to the simplest hoie of setting

ρ(αj |z(t−1)) = δ(αj −
∑

i z
(t−1)
ij /N) for the probability density funtion of α given z.
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(b)Figure 1. Generator-level η (top left) and pT (bottom left) distributions for signal (solid greenhistograms) and bakground partiles (dashed red histograms) with 2 GeV/ < pT < 5 GeV/from the high-statistis ontrol sample. The distributions orrespond to a total number of
∼ 33, 000 partiles and are normalized to unit area. The orresponding two-dimensionaldistribution is displayed on the right-hand side of the �gure.() Obtain updated estimates of the subpopulation PDFs by regularizing the η and pTdistributions orresponding to partiles mapped to the relevant subpopulation atiteration t − 1, i.e. based on z

(t−1)
ij .In general, the funtions fj are the joint PDFs for η and pT orresponding to bakground(j = 1) and signal (j = 2) partiles. This study is restrited to harged partiles with

2 GeV/ < pT < 5 GeV/, whih makes it possible to neglet the orrelation between η and pTas a �rst approximation. For this reason, the joint PDFs take the form fsig/bkg = f
(η)
sig/bkgf

(pT )
sig/bkg,and obtaining updated estimates of the subpopulation PDFs redues to regularization of one-dimensional histograms, as desribed in the following.As for the number of iterations to be used with the algorithm, no rule is doumented in thestatistis literature with referene to related tehniques, and the hoie is generally problem-dependent. The number of iterations was set to 1,000 in this study, and probabilities wereaveraged over the last 100 iterations. Runs were also performed letting the sampler run fora longer time: the algorithm exhibited a relatively fast onvergene on the data set analyzed,and no gain was found in hoosing a higher number of iterations. Moreover, multiple runs wereperformed under di�erent initial onditions in order to make sure that the algorithm onverged.In partiular, the initial onditions for the subpopulation PDFs were perturbed by using di�erentinitial onditions for the �ts to the high-statistis distributions from the ontrol sample. Similarly,the generation parameters in the toy Monte Carlo study were varied around their nominal valuesby ±10%, with no appreiable di�erene in the results.In order to obtain initial onditions ϕ

(0)
j for the subpopulation PDFs, a Monte Carlo dataset was used ontaining a total of about 33,000 harged partiles in the kinemati range

2 GeV/ < pT < 5 GeV/. In addition to estimation of ϕ
(0)
j , this high-statistis ontrol samplewas also used to guide the histogram regularization proedure as desribed in the following.Figure 1 (a) shows the η and pT distributions for signal and bakground partiles (solid green
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Figure 2. Partile η and pT distributions from the Monte Carlo input data set used in thisstudy. Solid green and dashed red histograms orrespond to signal and bakground, respetively.Distributions are normalized to unit area.and dashed red histograms, respetively).As antiipated, one of the goals of the sampler is to estimate the bakground PDFs from theinput olletion of partiles. In other words, the algorithm lassi�es partiles into signal andbakground without relying exlusively on prede�ned bakground templates: the bakgroundPDFs that are estimated by the algorithm are thus expeted to re�et the spei� bakgroundonditions in the input data set, whih an be di�erent from the average onditions obtainedfrom a high-statistis ontrol sample.The algorithm basially tries to unover a signal and a bakground subpopulation in the inputolletion of partiles based on the data and on initial onditions on the subpopulation PDFs.The results presented in this artile relate to an input data set omprising 636 harged partilesin the kinemati region 2 GeV/ < pT < 5 GeV/, out of whih 481 originate from a signalhard proess and 155 from bakground, orresponding to a fration of bakground partiles of
∼ 24%. The total number of partiles in the input data set is in line with typial harged partilemultipliities at the LHC as of July 2011.The signal and bakground η and pT distributions orresponding to the Monte Carlo inputdata set used in this study are shown in �gure 2. The solid green (dashed red) histograms inthe upper panel display the signal (bakground) η distributions, normalized to unit area. Theorresponding pT distributions are given in the lower panel. It is worth notiing that someof these distributions are appreiably di�erent from the orresponding ones obtained from theontrol sample due to statistial �utuations, as expeted. In partiular, the bakground ηdistribution exhibits two modes that are shifted with respet to zero, while the orrespondingdistribution from the ontrol sample is entered around zero.In order to illustrate the histogram regularization proedure used in this study, �gure 3 showsan example of the η distribution of partiles mapped to the signal subpopulation at a giveniteration of the algorithm. As opposed to assuming a funtional form for the PDF and �tting afuntion to the histogram, the histogram is regularized i.e. the subpopulation PDF is obtainedby means of spline interpolation of the histogram ontents, as further disussed in the following.The superimposed urve on the �gure orresponds to the regularized histogram, and is used by
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Figure 4. Illustration of the regularization window used in this study. The histogramsorrespond to signal (solid green) and bakground (dashed red) η distributions from the high-statistis ontrol sample. The position of the solid green and dashed red arrows orrespond to theregularization window: at eah iteration of the algorithm, only the part of the distribution thatlies between the arrows is used for spline interpolation, whih makes the results robust againstoutliers. Additional details are given in the text.estimated PDF. However, as antiipated, that approah was observed to introdue signi�antbias in previous studies, and was thus abandoned in favor of the statistial model presented in(1), where subpopulation PDFs are de�ned as the output of a histogram regularization proedurewithout referene to any prede�ned funtional form, but still subjet to regularization onstraints.Figure 4 shows signal (solid green) and bakground (dashed red) η distributions from the high-statistis ontrol sample, with superimposed arrows indiating the regularization window. Themaximum |η| value was set to |η| = 5 (|η| = 7) for signal (bakground).On top of this, again with a view to getting rid of extreme statistial �utuationswhen regularizing histograms, boundary onditions were introdued on the η and pT PDFs,onstraining the value of fj to points hosen based on ontrol sample distributions: in partiular,the signal (bakground) η PDF was onstrained to 0 when |η| > 5 (|η| > 7), and signal(bakground) pT PDFs were onstrained at 2 GeV/ and 5 GeV/ to 0.7 (1.2) and 0.1 (0)(see �gure 1(a)).Results were found to be stable with respet to reasonable hanges to the above regularizationontraints.3.2. Choie of on�gurationAs antiipated, the algorithm an be operated in unonstrained or onstrained mode, dependingon whether step () in the pseudoode given in setion 3 is inluded or not.As already pointed out in setion 2, the algorithm an proess an input olletion of partilesin order to obtain one or more of the following results:(i) Estimate the subpopulation PDFs from the input data set.(ii) Estimate the fration of partiles assoiated with a given proess in the input data set, e.g.the fration of bakground partiles.(iii) Assign individual partiles a probability for them to originate from a given proess, suhas a hard sattering of interest as opposed to bakground, based on subpopulation PDFs



estimated at step (i) as opposed to relying on prede�ned templates that re�et averagebakground onditions.Depending on the objetive, it may be appropriate to run the algorithm in di�erent modes.For instane, the histogram regularization proedure that is used here to obtain iterativeestimates of the subpopulation PDFs when the algorithm is operated in unonstrained modeinherently leads to bias on mixture weights, beause imposing a regularization window hangesthe number of partiles that are mapped to signal or bakground at a given iteration. For thisreason, it may be more appropriate to use a di�erent approah in order to estimate the frationof bakground partiles.One option is desribed below:(a) The onstrained sampler is �rst used to estimate the mixture weights. In the two-subpopulation senario desribed in this study, goal (ii) above orresponds to estimatingthe fration of bakground partiles ontained in the input data set. The initial onditionsfor the mixture weights are α
(0)
0 = α

(0)
1 = 0.5, orresponding to no prior knowledge aboutthe fration of bakground partiles in the input sample. The subpopulation PDFs atinitialization are �xed to the estimates provided by the high-statistis ontrol sample. Theorresponding results are desribed in setion 3.2.1.(b) The algorithm is then run again on the input data set in unonstrained mode, i.e.subpopulation PDFs are now updated at eah iteration, starting from initial onditionsorresponding to regularized distributions from the high-statistis ontrol sample. However,mixture weights are kept �xed to the results from the previous step.It is worth notiing that the algorithm di�ers from a proper Gibbs sampler in both ases.As for assigning individual partiles in the input data set a probability for them to originatefrom signal as opposed to bakground, the most appropriate approah may again depend on thespei� appliation. In general, probabilities may be assigned diretly using the unonstrainedsampler at step (b) above, as done in this study, or an additional run of the algorithm inonstrained mode may alternatively be added after the previous two, with �xed PDFs given bythe estimates from step (b). Further studies will be neessary in order to better understand thelassi�ation performane of the algorithm in di�erent on�gurations and to guide this hoie.Results obtained running the onstrained an unonstrained sampler as desribed above onthe Monte Carlo input data set used in this study are reported and disussed in the followingsetions.3.2.1. Constrained sampler As antiipated, the algorithm in onstrained mode was primarilyused in this study in order to estimate mixture weights, i.e. the fration of bakground partilesin the input data set. Figure 5 shows the orresponding estimates over the last 100 iterations.The solid green and dashed red urves orrespond to the estimated frations of signal andbakground partiles, respetively. The solid green (dashed red) horizontal line indiates thesignal (bakground) true value from the simulation, while the dash-dot line orresponds to theinitial onditions for the mixture weights.Additional runs on toy Monte Carlo samples were performed as a ross-hek, as desribed inthe appendix. In partiular, �gure 6 displays the estimated mixture weights obtained by runningthe onstrained sampler on a toy Monte Carlo data set with subpopulation PDFs kept �xed attruth information.3.2.2. Unonstrained sampler The unonstrained sampler was used in this study in order toestimate the signal and bakground PDFs from the input data set, while keeping the mixtureweights �xed at the results obtained from the previous run of the algorithm in onstrained mode.
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Figure 5. Mixture weights obtained running the onstrained sampler on the Monte Carlo inputdata set. Results from the last 100 iterations are shown. The solid green (dashed red) urvedenotes the estimated fration of signal (bakground) partiles. The solid green (dashed red)horizontal line indiates the true value for signal (bakground) from the simulation, and thedash-dot line orresponds to the initial onditions for the mixture weights.
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Figure 6. Mixture weights obtained running the onstrained sampler on a toy Monte Carlodata set, as desribed in the text. Results from the last 100 iterations are shown. The solidgreen (dashed red) urve orresponds to the estimated fration of signal (bakground) partiles.The solid green (dashed red) horizontal line indiates the true value for signal (bakground) fromthe toy Monte Carlo, and the dash-dot line orresponds to the initial onditions for the mixtureweights.Figure 7 shows the subpopulation PDFs estimated by the algorithm on the Monte Carloinput data set. The urves orrespond to the output of the histogram regularization proedureaveraged over the last 100 iterations, superimposed to the true distributions (histograms). The η(pT ) distributions are displayed in the top (bottom) plots, �gures on the left-hand (right-hand)side orreponding to bakground (signal). All distributions are normalized to unit area. Thebottom panel in eah �gure shows the orresponding ratio between the relevant subpopulationPDF estimated by the algorithm and truth information.The �gure illustrates a distintive harateristi of the proposed algorithm as opposed towell-established tehniques. As already pointed out, the bakground η distribution in the MonteCarlo data set used in this study di�ers appreiably from the orresponding distribution obtainedfrom the ontrol sample, as shown by the two modes around η ≃ −2 and η ≃ 1 in the �gure,
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Figure 7. Subpopulation PDFs estimated by the unonstrained sampler on the Monte Carloinput data set used in this study, averaged over the last 100 iterations. Top left: bakground η.Top right: signal η. Bottom left: bakground pT . Bottom right: signal pT . In eah sub�gure,the upper panel shows truth information (histogram bars) superimposed to the result of theregularization proedure averaged over the last 100 iterations (urve). The lower panels displaythe ratio between subpopulation PDFs estimated by the algorithm and the orresponding truth-level information.as opposed to the symmetri distribution entered around η ≃ 0 that is obtained from thehigh-statistis data set. As it an be seen, the sampler was able to identify with reasonableperformane the presene of suh deviations with respet to the ontrol sample templates. Suhproperties of the bakground PDFs are spei� to the data set under investigation, and ouldnot have been extrated using traditional supervised lassi�ation tehniques, sine those wouldhave relied on prede�ned bakground templates those features would have been absent from inthe �rst plae.In onlusion, although this study shows that traditional tehniques an in some asesoutperform this algorithm in terms of lassi�ation performane as disussed in the following,the primary objetive of the proposed approah is not to improve on existing methods in terms oflassi�ation performane, but rather to extrat information about statistial �utuations froma data set of interest.In addition to obtaining data-driven estimates of the subpopulation PDFs in unonstrainedmode, one of the goals of the algorithm in this appliation is to assign individual partiles aprobability for them to originate from a given proess, suh as a hard sattering of interest asopposed to bakground. In this study, the latter probabilities were obtained from the sameunonstrained run of the algorithm that provided the PDF estimates shown in �gure 7. Ingeneral, other hoies are possible, suh as performing an additional run of the algorithm inonstrained mode with subpopulation PDFs kept �xed at the estimates shown in �gure 7, aspreviously mentioned. Detailed studies will be neessary in order to understand the impliations
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Figure 9. Comparison between the ROC urve obtained using the unonstrained sampler,shown here as bakground rejetion rate as a funtion of signal e�ieny, and the orrespondingurves obtained using existing supervised lassi�ation tehniques from TMVA, as desribedin the text. The solid red line is the urve from the unonstrained sampler orresponding tothe last 100 iterations. The other urves orrespond to TMVA algorithms, namely BoostedDeision Trees (dashed blue), Naive Bayes lassi�ation (dashed blak), the Neural Network-based lassi�er MLPBNN (dashed green), and Linear Disriminant (dashed red). Additionalinformation is given in the text.of di�erent hoies before population-based tools for bakground disrimination an be appliedto physis analysis at the LHC.An initial omparison of the lassi�ation performane of the algorithm in the on�gurationhosen for this study with the orresponding performane of existing tehniques is desribed insetion 3.3.The probabilities returned by the algorithm were validated by omparing the true kinematidistributions with the orresponding ones for partiles with Psig > 0.5, Psig being the estimatedprobability for a given partile to originate from the signal proess, averaged over the last 100iterations. Results are shown in �gure 8, where histogram bars indiate the η distribution for



Table 1. Average numbers of pile-up partiles (seond olumn) expeted at di�erent LHCinstantaneous luminosities (�rst olumn) [17℄. A 25 ns bunh rossing is assumed. The thirdolumn reports the orresponding ratios between the number of bakground and signal partilesobserved in the kinemati region onsidered in this study. These estimates were used to generatethe urves shown in �gure 10, as desribed in the text.
L(m−2s−1) 〈nPU〉 Nbkg/Nsig

1033 2.3 0.1
1034 23.0 0.9
1035 230.0 4.4
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Figure 10. Bakground ontamination as a funtion of signal e�ieny at di�erent LHCinstantaneous luminosities (1033 m−2s−1 solid blak, 1034 m−2s−1 dashed blue, 1035 m−2s−1dotted green). Bakground ontamination is de�ned as number of mislassi�ed bakgroundpartiles normalized to number of signal partiles. Mislassi�ation probabilities orrespond tothe ROC urve from the sampler in �gure 9. Additional information is given in the text.partiles with Psig > 0.5 and stars orrespond to true distributions.3.3. Classi�ation performaneOperating the sampler as presented in this artile is equivalent to using it as a binary lassi�er.Its performane an thus be quanti�ed using the Reeiver Operating Charateristi (ROC) urve,whih displays true-positive as a funtion of false-positive probability. The area under the urveis a number between 0 and 1: the higher its value, the better the lassi�er is able to disriminatebetween the two ategories (signal and bakground in this ase). The ROC urve of a randomlassi�er would be a straight line along the main diagonal on the true-positive vs false-positiveplane (�hane diagonal" [15℄).Figure 9 shows a omparison between the ROC urve obtained using the unonstrainedsampler on the Monte Carlo input data set used for this study and the orresponding urvesfrom di�erent supervised multivariate lassi�ation methods using TMVA [16℄ V04-01-00. Theurves are displayed using an equivalent representation in terms of bakground rejetion rate as



a funtion of signal e�ieny1 . The dashed lines refer to di�erent TMVA methods2, namelyBoosted Deision Trees (dashed blue), Naive Bayes lassi�ation (dashed blak), the NeuralNetwork-based lassi�er MLPBNN (dashed green), and Linear Disriminant (dashed red).The solid red line orresponds to the proposed algorithm. The �gure suggests thatlassi�ation performane of the sampler is similar to that of existing supervised methods,although other methods perform better in terms of ROC urve on the data set used in thisstudy. However, the advantage of the proposed sampling algorithm with respet to existingmethods is not in terms of improved lassi�ation performane, but instead relates to estimatingfeatures of the bakground distributions that re�et statistial �utuations in the data, whih isgenerally not possible using established supervised lassi�ers trained on ontrol samples.It may also be useful to provide a more preise idea of the bakground rejetions andsignal e�ienies that an be ahieved using the proposed algorithm orresponding to di�erentLHC instantaneous luminosities3. Figure 10 shows estimates of bakground ontamination asa funtion of signal e�ieny at three di�erent LHC instantaneous luminosities. Bakgroundontamination is de�ned as the number of mislassi�ed bakground partiles normalized to thenumber of signal partiles, and is alulated by resaling the absissa of the ROC urve by theratio between the number of bakground and signal partiles in the kinemati region onsideredin this study, as given in table 14. The absissa of the ROC urve in fat orresponds to false-positive rate, i.e. to the probability for a bakground partile to be mislassi�ed as signal, andmultiplying it by the ratio between the number of bakground and signal partiles providesthe desired result. The three urves in �gure 10 orrespond to instantaneous luminosities of
1033 m−2s−1 (solid blak), 1034 m−2s−1 (dashed blue), and 1035 m−2s−1 (dotted green).3.4. Convergene issuesA remark is neessary with regards to the onvergene properties of the Markov Chain assoiatedwith the proposed sampling algorithm in the form presented in this artile. The proposedtehnique is here justi�ed primarily based on the results it provides, and based on its abilityto extrat additional information related to statistial �utuations from a data set of interest.This is to be ompared with the desription of bakground distributions obtained using ontrolsamples, whih, despite its level of preision, usually only re�ets average bakground onditionsand does not take statistial �utuations into aount.Although the statistial model (1) may be questioned from a theoretial point of view and amore rigorous approah based on Bayesian nonparametri methods may be required, the modelpresented here in pratie leads to a well-de�ned target distribution for the algorithm to samplefrom. As antiipated, this is primarily due to the onstraints assoiated with the histogramregularization proedure adopted in this study, whih e�etively restrits the searh spae andleads to the existene of a well-de�ned stationary distribution for the Markov Chain. This wasalso veri�ed expliitly by using �at distributions as initial onditions for the subpopulation PDFs,making sure that reasonable estimates of the PDFs were still obtained by the sampler.
1 Based on our previous terminology, �bakground rejetion rate" is equivalent to 1 − Pbkg→sig , and �signale�ieny" orresponds to Psig→sig , where Pbkg→sig (Psig→sig) is the probability for a bakground (signal) partileto be mapped to the signal subpopulation.
2 The algorithms were run using the high-statistis ontrol sample for training and the same olletion of partilesthe sampler was run on for testing.
3 The expeted average number of pile-up interations, i.e. the expeted average number of primary verties inthe events, is here taken as a measure of bakground ativity for illustrative purposes.
4 The average numbers of pile-up interations at di�erent LHC instantaneous luminosities are taken from [17℄,and orrespond to a 25 ns bunh rossing.



3.5. Dependene on initial onditionusOne more issue that is worth disussing is dependene of results on initial onditions. Theability to reah the equilibrium distribution regardless of the starting point is a de�ning featureof Markov Chains. Throughout this study, it has been veri�ed that the initial onditions onthe subpopulation PDFs an be perturbed without altering the �nal resuls. Results are atuallyindependent of the PDF initial onditions well beyond the deviations that are normally expetedgiven the high level of preision with whih initial PDF estimates are generally obtained fromontrol samples.The similarity of the PDFs estimated by the sampler with the PDF initial onditions obtainedfrom the ontrol sample should not be mistaken for a limitation of the proposed method, butshould rather be seen as a de�ning feature. Although inorporating a more rigorous formulationof the statistial model will be important for the method to be developed further, it shouldbe notied that one of the goals of the algorithm is to improve on knowledge of bakgroundPDFs obtained from high-statistis ontrol samples by extrating additional information aboutstatistial �utuations from a data set under study. For this reason, the PDFs estimated bythe sampler will normally be similar to the initial PDFs, and the assoiated Markov Chain willgenerally exhibit a relatively-fast onvergene by onstrution.3.6. Conluding remarksThe possibility to estimate features of signal and bakground distributions from a data set understudy is a distintive harateristi of the proposed method as ompared to existing multivariateapproahes suh as those available in ROOT [18℄ with TMVA. Although established tehniquesin some ases provide better lassi�ation performane on the data set analyzed in this study, asshown by the omparison in �gure 9, existing methods are in general unable to desribe featuresof the bakground distributions that are not already enoded in the training sample. And sinethe latter typially orresponds to a high-statistis ontrol sample, this usually leads to statistial�utuations in the input data set being negleted.This tehnique has been investigated with the prospetive goal of developing novel methodsfor intensive o�ine analysis of individual interesting events at the LHC, and more generallyin partile physis. Data analysis in the �eld in fat often results in a number of andidateevents that may ontain a signal proess of interest. Traditional methods perform bakgroundsubtration based on �xed templates that typially provide a preise desription of averagebakground properties. However, this approah normally leads to negleting features ofbakground distributions due to statistial �utuations that may be present in the andidateevents of interest even though those features annot be spotted from bakground templatesobtained from ontrol samples. Developing dediated tools for bakground subtration based onevent-level templates taking �utuations into aount may then lead to improved bakgroundsubtration and to lower assoiated systemati unertainties. This aspet will be the subjetof future studies, as will quanti�ation of the impat of the algorithm in a realisti analysisenvironment.It is also worth notiing that, from a oneptual point of view, the proposed population-basedapproah is in a sense based on a similar phylosophy as partile �ow analysis, whih has beeninreasingly used in partile physis [19℄, in that the fous is on individual partiles inside events.However, the prospetive objetive of the proposed tehnique is di�erent, and onentrates onextrating from the data event-level bakground templates that take statistial �utuations intoaount.E�orts to eliminate noise in event-by-event analysis of high-energy multipartile produtionare reported in the literature, most notably with referene to the study of dynamial �utuationsin heavy-ion ollisions, where the notion of �event-by-event �utuations" was introdued [20℄,e.g. for mean transverse momentum or mean transverse energy measurement. In the ontext of



suh studies, the fous is e.g. on analytially obtaining moments that an be used to eliminatestatistial �utuations from the data with a view to extrating information about the underlyingdynamis [21℄. Although those studies are oneptually related to the prospetive goal of theapproah presented in this artile in that they aim to subtrat noise from individual events,they are fundamentally di�erent. First of all, [21℄ requires �utuations to be Poissonian, whilethis method works under more general onditions. Moreover, one of the novel aspets of thiswork is the idea of onentrating on individual partiles inside events, reformulating bakgrounddisrimination in terms of a lassi�ation problem at the partile level. In other words, theemphasis of this work on a new population-based view of partile physis events is an importantaspet that distinguishes the proposed approah from previous e�orts.As a onluding remark, it should also be noted that the iterative nature of the algorithmleads to a disadvantage with respet to established multivariate algorithms in terms of exeutiontime. However, the running time of the sampler orresponding to 1,000 iterations on the MonteCarlo input data set used in this study was ∼ 20 s on a 2 GHz Intel Proessor with 1 GBRAM, so still reasonable for o�ine use. In any ase, given the parallelization potential of thesampler, whih is a onsequene of a similar property of the Gibbs sampler as pointed out in [2℄,improvements may be possible in this respet, for example using ommodity Graphis ProessingUnits (GPUs) that have been used extensively both in partile physis and in other disiplinesfor ompute-intensive appliations.4. Conlusions and outlookThis ontribution has presented an initial investigation of a novel approah to bakgrounddisrimination in partile physis that builds on a population-based view of events from high-energy partile ollisions. Colletions of partiles are treated as mixtures of subpopulationsassoiated with di�erent physis proesses, and sampling tehniques related to statistial mixturedeomposition models are used to assign individual partiles a probability for them to originatefrom a hard sattering of interest as opposed to bakground. This appliation of the proposedsampling algorithm to a lassi�ation problem at the partile level has been pursued with theprospetive goal of developing a suite of tools for extration of bakground properties fromindividual interesting events at the LHC, and more generally in partile physis. For instane, amajor objetive is to obtain estimates of PDF shapes from the data without relying exlusivelyon templates from high-statistis ontrol samples and without assuming prede�ned funtionalforms.This study has highlighted strengths and limitations of the algorithm operated in di�erenton�gurations. In general, systemati unertainties assoiated with the use of the algorithm willhave to be evaluated in the ontext of a given analysis.Detailed understanding of how lassi�ation performane in di�erent on�gurations omparesto existing tehniques will also require further study, as will the possible developmentof subsequent versions optimized in terms of exeution time, building on the inherentparallelizability of the algorithm.As antiipated, the total number of partiles in the Monte Carlo input data set used in thisstudy is in line with typial harged partile multipliities at the LHC orresponding to operatingonditions as of July 2011. For this reason, the results presented in this artile are a promisingstarting point for futher development, with a view to building dediated software tools for o�ineanalysis of individual interesting events at the LHC.AknowledgmentsThe author wishes to thank the High Energy Physis Group at the Department of Physis andAstronomy, University College London, for their kind hospitality that reated the onditions forthis study to be ompleted. Partiular gratitude goes to Prof. Jonathan M. Butterworth for
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