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Abstract. New features of the symbolic algebra package Form 4 are discussed. Most
importantly, these features include polynomial factorization and polynomial gcd computation.
Examples of their use are shown. One of them is an exact version of Mincer which gives answers
in terms of rational polynomials and 5 master integrals.

1. Introduction
Form is a symbolic algebra package that has been developed by J. Vermaseren et al. for the past
decades [1]. Its fast manipulation of large expressions makes it an ideal tool to attack the big
problems that occur in particle phenomenology. Recently, version 4β has been released, that
includes many new features including polynomial algebra. This new feature can be divided in
three different operations, namely greatest common divisors (gcds), factorization and rational
polynomials. This paper discusses these operations and provides examples of Form code to show
how to use them.

2. Greatest common divisors
The greatest common divisor of two polynomials is a polynomial that divides both of them and
that is divisable by every other polynomial that divides both. In Form 4, this polynomial can
be determined by function gcd_ in the following way.

Symbols x,y;
Local E = gcd_(x^2+x*y, y^2+x*y);
Print;
.end

E=
y + x;

In previous version of Form, the gcd_ function would return E=1 for this particular example.
To determine the gcd, Form uses the following algorithms. For small polynomials, a heuristic

that substitutes integers and performs integer gcd calculations is used [2]. For large polynomials,
Zippel’s modular algorithm is used [3]. This latter algorithm is fast for both sparse and dense
polynomials. The speed of Form’s gcd algorithms is comparable to Mathematica’s.



3. Factorization
In Form, there are a few statements that can be used to factorize a polynomial over the rational
numbers. First, there exists FactArg_, which is used to factorize a function argument. Its usage
is as follows.

Symbols k,i,f,e,h;
CFunction N;
Local E = N(k*f+k*e+k*h+i*f+i*e+i*h);
FactArg N;
Print;
.end

E=
N(i + k,h + e + f);

Note that this changes the previous behaviour of FactArg_. To get the old behaviour, a
switch On OldFactArg has been implemented.

The second variety of polynomial factorization is for dollar variables and can be invoked as
follows.

Symbols x,y;
#$a = x^2-y^2;
#Factorize $a;
#do i=1, ‘$a[0]’
#write "%$", $a[‘i’];

#enddo

-y+x
y+x

Note that $a[0] results in the number of factors, while $a[i] yield the actual factors.
The third way of using the factorization routines works for expressions. The usage is as

follows:

Symbols x;
Local E = x^2-1;
Factorize E;
.end

E =
( -1 + x )
* ( 1 + x );

The number of factors of a factorized expression is given by numfactors(E) and the individual
factors can be addressed to by E[factor_^i].

To factorize polynomials, Form uses the following algorithms. For univariate polynomials,
Berlekamp’s algorithm is used [4]. Multivariate polynomials are reduced to univariate ones by
substuting integers for all but one variable and factorized as such. Afterwards, the multivariate
result is obtained by Hensel lifting [5]. For big random polynomials that factorize into two
factors, speedups of upto a factor of 1 000 have been measured compared to Mathematica.



4. Rational polynomials
In Form, the statement PolyRatFun turns a function into a rational polynomial with the first
argument as numerator and the second argument as denominator. The function also serves as
coefficient of the terms, just like the PolyFun in previous versions of Form. The following code
shows how it can be used.

Symbols x,y,z;
CFunction f;
PolyRatFun f;
Local E = x * f(y,z) + x * f(y,1-z)

+ x^2 * f(y^2-1,y-1);
Print;
.end

E =
x*f( - y,z^2 - z) + x^2*f(y + 1,1);

5. Application: MincerExact
As a first application of Form’s polynomial algebra, a new version of Mincer [6] has been written.
Mincer is a program for three-loop massless propagator diagrams and it works in expansions in
ε = (4 −D)/2. The original version keeps track of expansions typically up to the sixth power.
Big tables with expansions of Pochhammer symbols, inverse gamma functions and alike are
needed for the calculations.

The new version, MincerExact, does not expand in ε, but stores the result as a rational
polynomial in it. In this way, no big tables are needed, which results in much shorter and
cleaner source code. The resulting program is not much slower than the original version.
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