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Abstract. The program packageGoSam is presented which aims at the automated calculation
of one-loop amplitudes for multi-particle processes. The amplitudes are generated in terms of
Feynman diagrams and can be reduced using either D-dimensional integrand-level decomposition
or tensor reduction, or a combination of both. GoSam can be used to calculate one-loop
corrections to both QCD and electroweak theory, and model files for theories Beyond the
Standard Model can be linked as well. A standard interface to programs calculating real
radiation is also included. The flexibility of the program is demonstrated by various examples.

1. Introduction

Precise theory predictions play an important role in the analysis and the interpretation of collider
physics data, in the search for new particles as well as to constrain model parameters at a
later stage. Therefore it is desirable to have predictions at next-to-leading order (NLO) in
perturbation theory as a standard at the LHC. However, this can only be achieved if a level of
automation for NLO predictions is reached which comes close to the one we have for leading
order tools.

The need for an automation of NLO calculations has been noticed some time ago
and lead to public programs like FeynArts [1] and QGraf [2] for diagram generation and
FormCalc/LoopTools [3] and GRACE [4] for the automated calculation of NLO corrections.
However, calculations of one-loop amplitudes with more than four external legs were still tedious
case-by-case calculations. Only very recently, conceptual and technical advances in multi-leg one-
loop calculations opened the door to the possibility of an automated generation and evaluation
of multi-leg one-loop amplitudes. As a consequence, public NLO tools containing a collection of
hard-coded individual processes, like e.g. MCFM [5, 6], VBFNLO [7, 8, 9], MC@NLO [10, 11],
POWHEG-Box [12, 13, 14], POWHEL [15, 16, 17], are now being complemented by flexible
automated tools [18, 19, 20, 21, 22] which have as their aim that basically any process which
may turn out to be important for the comparison of LHC findings to theory can be evaluated
at NLO accuracy.

In this talk, we present the program package GoSam[18] which allows the automated
calculation of one-loop amplitudes for multi-particle processes. Amplitudes are expressed in



terms of Feynman diagrams, where the integrand is generated analytically using QGRAF [2],
FORM [23], spinney [24] and haggies [25]. The individual program tasks are steered via python
scripts, while the user only needs to edit an “input card” to specify the details of the process to
be calculated, and launch the generation of the source code and its compilation, without having
to worry about internal details of the code.

The program offers the option to use different reduction techniques: either the unitarity-based
integrand reduction [26, 27] as implemented in Samurai [28] or traditional tensor reduction as
implemented in golem95C [29, 30] interfaced through tensorial reconstruction at the integrand
level [31], or a combination of both. It can be used to calculate one-loop corrections within
both QCD and electroweak theory. Beyond the Standard Model theories can be interfaced using
FeynRules [32] or LanHEP [33]. The Binoth Les Houches interface [34] to programs providing the
real radiation contributions is also included.

2. Theoretical framework

2.1. Generation of the diagrams

For the diagram generation we use the program QGRAF [2] and supplement it by adding another
level of analyzing and filtering the diagrams, written in Python. This allows for example to drop
diagrams whose colour factor turns out to be zero, or to determine the signs for diagrams with
Majorana fermions.

Within our framework, QGRAF generates three sets of output files: an expression for each
diagram to be processed with FORM [23], Python code to draw all diagrams, and Python code to
compute the properties of each diagram. The information about the model is either read from
the built-in Standard Model file or is generated from a user defined LanHEP [33] or Universal
FeynRules Output (UFO) [32] file.

The program also produces a LATEX file which contains graphical representations of all
diagrams as well as a summary of the helicity and colour basis used.

2.2. Code generation

The amplitude is generated in terms of algebraic expressions based on Feynman diagrams and
then processed with a FORM program, using spinney [24] for the spinor algebra. In GoSam we
have implemented the ’t Hooft-Veltman scheme (HV) and dimensional reduction (DRED). In
both schemes all external vectors (momenta and polarisation vectors) are kept in four dimensions,
while internal vectors are kept in the n-dimensional vector space (n = 4 − 2ǫ). We adopt the

conventions used in [24], where k̂ denotes the four-dimensional projection of an n-dimensional
vector k. The (n−4)-dimensional orthogonal projection is denoted by k̃. For the loop momentum
q we introduce the symbol µ2 = −q̃2, such that

q2 = q̂2 + q̃2 = q̂2 − µ2. (1)

To prepare the numerator functions of the one-loop diagrams for their numerical evaluation,
we separate the symbol µ2 and dot products involving the momentum q̂ from all other factors.
All subexpressions which do not depend on either q̂ or µ2 are substituted by abbreviations,
which are evaluated only once per phase space point. Each of the two parts is then processed
by haggies [25], which generates optimised Fortran95 code for the numerical evaluation. For
each diagram we generate an interface to Samurai [28], golem95C [30] and/or PJFRY [35, 36].

Our standard choice for the reduction is to use Samurai [28], which provides a very fast and
stable reduction in a large part of the phase space. Furthermore, Samurai reports to the client
code if the quality of the reconstruction of the numerator suffices the numerical requirements. In
GoSam we use this information to trigger an alternative reduction with either golem95C [30] or
PJFRY [35] whenever these reconstruction tests fail. This combination of on-shell techniques and



traditional tensor reduction is achieved using tensorial reconstruction at the integrand level [31].
The tensorial reconstruction not only can cure numerical instabilities, but in some cases also can
reduce the computational cost of the reduction. Since the reconstructed numerator is typically
of a form where kinematics and loop momentum dependence are already separated, the use of
a reconstructed numerator tends to be faster than the original procedure, in particular in cases
with a large number of legs and low rank.

2.3. Rational terms

Terms containing the symbols µ2 or ε in the numerator of the integrands can lead to a so-called
R2 term [37], which contributes to the rational part of the amplitude. We generate the R2 part
along with all other contributions without the need to separate the different parts. In addition,
we provide an implicit and an explicit construction of the R2 terms, using the fact that there
are two ways of splitting the numerator function:

N (q̂, µ2, ε) = N0(q̂, µ
2) + εN1(q̂, µ

2) + ε2N2(q̂, µ
2) (2)

or, alternatively,

N (q̂, µ2, ε) = N̂ (q̂) + Ñ (q̂, µ2, ε). (3)

The implicit construction uses the splitting of Eq. (2) and treats all three numerator functionsNi

on equal grounds. Each of the three terms is reduced separately in a numerical reduction and
the Laurent series of the three results are added up taking into account the powers of ε.

The explicit construction of R2 is based on the assumption that each term in Ñ in Eq. (3)
contains at least one power of µ2 or ε. The expressions for those integrals are relatively simple
and known explicitly. Hence, the part of the amplitude which originates from Ñ is computed
analytically whereas the purely four-dimensional part N̂ is passed to the numerical reduction.

In the program, possible options for R2 are r2=implicit,explicit, off and only. Using
r2=only discards everything but the R2 term and puts GoSam in the position of providing R2

terms to supplement other codes which work entirely in four dimensions.

2.4. Conventions

To be specific, we consider the case where the user wants to compute QCD corrections. In the
case of electroweak corrections, the analogous conventions apply except that the strong coupling
gs is replaced by e. In the QCD case, the tree-level matrix element squared can be written as

|M|2tree = A†
0A0 = (gs)

2b · a0 , (4)

where b = 0 is also possible. The matrix element at one-loop level, i.e. the interference term
between tree-level and one-loop, can be written as

|M|21-loop = A†
1A0+A†

0A1 = 2 ·ℜ(A†
0A1) =

αs(µ)

2π

(4π)ε

Γ(1− ε)
(gs)

2b
[

c0 +
c−1

ε
+

c−2

ε2
+O(ε)

]

.

(5)

A call to the subroutine samplitude returns an array consisting of the four numbers
(a0, c0, c−1, c−2) in this order. The average over initial state colours and helicities is included in
the default setup. Renormalisation is included depending on the options chosen by the user, for
a more detailed description we refer to [18]. In cases where the process is loop induced, i.e. the

tree level amplitude is absent, the program returns the values for A†
1A1, where a factor

(

αs(µ)

2π

(4π)ε

Γ(1− ε)

)2

has been extracted.



Table 1. Part of the process card defining the initial and final state and the type and order of
the coupling at LO and NLO
process path= qqgz
in= u,u∼
out= g, e-, e+
helicities= + − + − +, + − − − +, − + + − +, − + − − +
order= QCD, 1, 3

3. Installation and Usage

3.1. Installation

The user can download the code GoSam either as a tar-ball or from the subversion repository
at

http://projects.hepforge.org/gosam/ .

The build process and installation of GoSam is controlled by Python Distutils, while the
build process for the libraries Samurai and golem95C is controlled by Autotools. To install
GoSam, the user needs to run

python setup . py i n s t a l l −−p r e f i x MYPATH

If MYPATH is different from the system default, the environment variables PATH, LD LIBRARY PATH

and PYTHONPATH might have to be set accordingly. For more details we direct the user to the
GoSam reference manual coming with the code.

The program is designed to run in any modern Linux/Unix environment; we expect that
Python (≥ 2.6), Java (≥ 1.5) and Make are installed on the system. Furthermore, a Fortran 95
compiler is required in order to compile the generated code.

On top of a standard Linux environment, the programs FORM [23], version ≥ 3.3, and
QGRAF [2] need to be installed on the system. Further, at least one of the libraries Sa-

murai [28] and golem95C [30] needs to be present at compile time of the generated code.
For the user’s convenience we have prepared a package containing Samurai and golem95C

together with the integral libraries OneLOop [38], QCDLoop [39] and FF [40]. The package
gosam-contrib-1.0.tar.gz containing all these libraries is available for download from
http://projects.hepforge.org/gosam/.

3.2. Usage

In order to generate the code for a process, the user needs to prepare an input file, called process

card in the following, which contains

• process specific information, such as a list of initial and final state particles, their helicities
(optional) and the order of the coupling constants;

• scheme specific information and approximations, such as the regularisation and
renormalisation schemes, the underlying model, masses and widths which are set to zero,
the selection of subsets of diagrams, etc;

• system specific information, such as paths to programs and libraries or compiler options;

• optional information for optimisations which control the code generation.

For example, to compute the QCD corrections for the process uū → gZ0 → g e−e+, the first
part of the process card looks as shown in Table 1: The first line defines the (relative) path to
the directory where the process files will be generated. GoSam expects that this directory has
already been created. Lines 2 and 3 define the initial and final state of the process in terms of
field names, which are defined in the model file. Besides the field names one can also use PDG
codes [41, 42] instead. For more details we refer to [18] and the reference manual.



3.3. Code generation

If the process card is called gosam.in, it can be invoked by gosam.py:

mkdir qqgz
gosam . py gosam . in
cd qqgz

All further steps are controlled by the generated make files; in order to generate and compile all
files relevant for the matrix element one needs to invoke

make compi le

The generated code can be tested with the program matrix/test.f90. The following sequence
of commands will compile and run the test program:

cd matrix
make t e s t . exe
. / t e s t . exe

The last lines of the program output should look as follows.

# LO: 0.3450350717601E−06
# NLO, f i n i t e part −10.77604823456547
# NLO, s i n g l e po le −19.98478948141949
# NLO, double po le −5.666666665861926
# IR , s i n g l e po le −19.98478948439310
# IR , double po le −5.666666666666666

The printed numbers are, in this order, a0, c0/a0, c−1/a0, c−2/a0 and the pole parts calculated
from the infrared insertion operator [43, 44]. One can also generate a pictorial representation of
all generated diagrams using the command

make doc

which generates the file doc/process.ps

3.4. Interfacing the code

3.4.1. Using the BLHA Interface The so-called Binoth Les Houches Accord (BLHA) [34] defines
an interface for a standardized communication between one-loop programs (OLP) and Monte
Carlo (MC) tools. GoSam can act as an OLP in the framework of the BLHA, such that the
calculation of complete cross sections is straightforward.

In general, the MC writes an order file, called for example olp order.lh, and invokes the
script gosam.py as follows:

gosam . py −−olp o l p o rd e r . lh

The invocation of gosam.py generates a set of files which can be compiled with a generated
make file. The BLHA routines are defined in the Fortran module olp module but can also be
accessed from C programs.

3.4.2. Using External Model Files GoSam can also make use of model files generated by either
FeynRules [45] in the UFO format [32] or by LanHEP [33]. The particles can be specified by their
PDG code. Details about how to import the model files are described in the GoSam reference
manual. Precompiled MSSM UFO and MSSM LHEP files can also be found in the subdirectory
examples/model. The examples directory also contains examples where UFO or LanHEP model
files are imported.



4. Examples

The code generated by GoSam has been compared to a considerable number of processes
available in the literature, as listed in Table 2. Many of these processes are also included
as examples in the code, including reference values.
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Figure 1. NLO calculation of W−+ jet production at LHC using GoSam interfaced with
SHERPA via the Binoth Les Houches interface and compared to MCFM.

As an example for the Binoth Les Houches Accord interface of GoSam we present results
for the QCD corrections to W− + 1 jet production, obtained by linking GoSam with
SHERPA [61]. Furthermore, SHERPA offers the possibility to match NLO calculations with a
parton shower [62, 63]. Results for the transverse momentum and rapidity distribution of the
leading jet are shown in Figs. 1(a) and 1(b). The comparison with MCFM [5, 6] shows perfect
agreement.

5. Conclusions

We have presented the program GoSam which can produce code for the evaluation of one-loop
matrix elements for multi-particle processes in an automated way. The program is publicly
available at http://projects.hepforge.org/gosam/ and can be used to calculate one-loop
amplitudes within QCD, electroweak theory, or other models which can be imported via an
interface to LanHEP or FeynRules. Monte Carlo programs for the real radiation can be easily
linked via the interface defined by the Binoth Les Houches Accord.

The amplitudes are generated in terms of Feynman diagrams and can be reduced by unitarity
based reduction at integrand level or traditional tensor reduction, or a combination of the two
approaches. This feature makes the program extremely robust against numerical instabilities.
The user can choose among different libraries for the master integrals, and the setup is such
that other libraries can be linked easily.

The calculation of the rational terms can proceed either together with the same numerical
reduction as the rest of the amplitude, or before any reduction, using analytic information on
the integrals which can potentially give rise to a rational part. Moreover, the GoSam generator
can produce code for processes which include unstable particles, i.e. intermediate states with
complex masses.

GoSam is very well suited for the automated matching of Monte Carlo programs to NLO
virtual amplitudes, and therefore can be used as a module to produce differential cross sections



process checked with Ref.

e+e− → uu [46]
e+e− → tt [47, 48], own analytic calculation

uu → dd [49, 20]
gg → gg [50]
gg → gZ [51]

dd → tt [20], MCFM [5, 52]
gg → tt [20], MCFM [5, 52]
bg → H b [53, 20]
γγ → γγ [54]

ud → e−νe [20]
ud → e−νe g [20]
e+e− → e+e−γ (QED) [55]
pp → H tt [20]
pp → W+W+jj [56, v3]
pp → W± j (QCD corr.) MCFM [5, 52]
pp → W± j (EW corr.) for IR poles: Eqs. (67),(70) of [57], [58]

pp → bbbb [59, 60]
pp → W+W−bb [19, 20]

uu → ttbb [19, 20]

gg → ttbb [19, 20]
ud → W+ggg [19]

Table 2. Processes for which GoSam has been compared to the literature.

for multi-particle processes which can be compared directly to experiment. Thus GoSam can
contribute to the goal of automating NLO corrections to an extent where NLO tools become a
standard for data analysis at the LHC.
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