
The toolbox of modern multi-loop calculations: novel

analytic and semi-analytic techniques

Alexey Pak

Institut für Theoretische Teilchenphysik, KIT, 76128 Karlsruhe, Germany

E-mail: apak@particle.uni-karlsruhe.de

Abstract. We describe three algorithms for computer-aided symbolic multi-loop calculations
that facilitated some recent novel results. First, we discuss an algorithm to derive the canonical
form of an arbitrary Feynman integral in order to facilitate their identification. Second, we
present a practical solution to the problem of multi-loop analytical tensor reduction. Finally,
we discuss the partial fractioning of polynomials with external linear relations between the
variables. All algorithms have been tested and used in real calculations.

1. Introduction
A higher-order calculation is a multi-stage process, with details strongly dependent on the
physics problem. There is no generic one-size-fits-all approach, but usually one first generates
the diagrams, then performs Dirac algebra and/or projections on scalar integrals, and then
manipulates large expressions that depend on scalar products of loop and external momenta
until they can be reduced to known integrals and computed. Each calculation has its own
“key” stage which requires the most efforts. In many cases, those are the algebraic reduction of
integrals (with integration-by-parts identities [1, 2, 3]) to a small subset of “master” integrals,
and the evaluation of the latter. Those problems have been the focus of active research for
many years and gave rise to a plethora of various methods and algorithms [4]. However, as the
three-, four- and higher-loop problems become the norm in the LHC era, even the traditionally
“simple” steps become impossible to perform manually or with the ad-hoc methods.

In this contribution we present the three algorithms that automate the tasks usually
considered “routine” and not worth mentioning. First, we discuss the classification of integrals
as instances of different “topologies”, or families of integrals that differ by the exponents of
the (fixed) denominator factors. When the number of such families reaches a few hundred,
automation becomes a necessity.

Second, we consider the tensor reduction, that may e.g. help re-arrange numerators of
factorizable topologies in order to perform integration independently. In certain cases, involving
complicated asymptotic expansions, this stage may dominate the total computation time of a
diagram. In addition, we provide a practical solution for the situations where general formulas
are not known. Finally, we present a (relatively straightforward) re-formulation of the partial
fractioning problem and solve it using Gröbner bases.

The primary use of these methods is to generate the code for the computer algebra system
that processes the actual diagrams (e.g. FORM [5]), and thus the runtime efficiency is not the

highest priority. Nevertheless, we find that our solutions are rather efficient and do not require
enormous times for real-life problems.

2. Identification of Feynman integrals
In multi-loop calculations, one often has to solve a problem of identifying individual Feynman
integrals or deciding whether an integral belongs to a given family (“topology”) which helps
reduce the number of integrals to compute. In general, in order to say whether two integrals are
equal one has to compute both. However, for some integrals it is possible to elaborate a simple
transformation of loop momenta and establish the identity of integrands. In simple cases, such
transformations can be derived manually just by looking at graphs, but in multi-loop multi-scale
problems with non-trivial kinematic constraints this is a daunting task.

Let us consider two forward-scattering integrals (Fig. 1):

I1 =

∫
dDk1 d

Dk2
D1D2D3D4D5

,
D1 = (k1 + p1)

2, D2 = k21, D3 = k22,
D4 = (k2 + p2)

2, D5 = (k1 + k2)
2 +m2,

(1)

I2 =

∫
dDq1 d

Dq2
E1E2E3E4E5

,
E1 = (q1 + p1)

2, E2 = q21, E3 = q22,
E4 = (q2 + p2)

2, E5 = (q1 + q2 + p1 + p2)
2 +m2 (2)

with the common additional constraints p21 = p22 = 0, (p1 + p2)
2 = −1.

The integrands of I1 and I2 obviously cannot be related by only renaming symbols. However,
the value of e.g. I1 is invariant with respect to a shift of loop momenta, e.g. k1 → k′1 = k1 + p1,
or a permutation of denominator factors, e.g. D1 ↔ D2, etc. There may exist a transformation
Di(K) = Ep(i)(Q) with K = MQ and p(i) is some permutation of indices 1, 2, ..., 5, such that

K =

k1
k2
p1
p2

 , Q =

q1
q2
p1
p2

 , M =

(
A B
0 I

)
, (3)

A and B are the 2× 2 matrices, |A| = 11 , and I is a 2× 2 identity matrix.
One practical way to compare two topologies is to compare graphs. In Fig.1 we present the

graphs corresponding to I1 and I2, and one can see that the graphs do not match. However,
some integrals may have no corresponding graphs (for example, integrals originating from some
effective theories may have linear denominators, e.g. 2p1k1 + i0, which cannot be interpreted as
graph lines), and some integrals may have multiple corresponding graphs (as in the given case).
In addition, (sub)graph isomorphism is itself a computationally hard problem2.

1 or in general |A| = d 6= 0, and integrals then are equal modulo corresponding Jacobian.
2 Subgraph isomorphism problem is NP-complete, while graph isomorphism belongs to the NP complexity class.

k
1
+ p

1

k
1

k
2

k
2
+ p

2

k
1
+ k

2

D 1

D 2 D 3

D 4

D 5

p
1

p
2

p
1

p
2

q
1
+ p

1

q
1

q
2

q
2
+ p

2

q
1
+ q

2
+ p

1
+ p

2

D 1 D 2

D 3

D 4 D 5

p
1

p
2

p
1

p
2

Figure 1. Graphs corresponding to integrals I1 and I2.

Instead, in order to compare integrals, one could use alpha-representation [6], which is
explicitly covariant, very closely related to the definition of dimensionally regularized Feynman
integrals and can be derived for any set of quadratic denominators. The structure of any
Feynman integral is encoded by the two homogeneous polynomials, U and F which do not depend
on the exponents of denominator factors and the dimensionality of space D. In particular, we
have:

Ii = C

∫
dx1 ... dx5 δ (x1 + ...+ x5 − 1) Uai F

b
i , (4)

U1 = U2 = x5(x3 + x4) + (x1 + x2)(x3 + x4 + x5),

F1 = m2x5U1 − x1x4x5, F2 = m2x5U1 − x2x3x5.

with constants C, a and b (irrelevant here) depending only on D.
The only freedom that is left when comparing {U1, F1} with {U2, F2} is a permutation of lines,

or equivalently, variables xi. One then has to find a permutation p(i) such that U1(~xi) = U2(~xp(i))
and F1(~xi) = F2(~xp(i)). Naturally, before looking at permutations, one may compare more
mundane properties of polynomials common to all permutations, such as the total number of
terms or the number of terms proportional to m2.

An obvious way to find p(i) when comparing two integrals would be to try all 5! = 120
permutations of xi. Since usually one has more than two candidates to compare, it is beneficial to
introduce a “canonical” ordering, maximizing some metric over all permutations. The canonical
ordering of lines should then be derived only once per integral, and the identity of canonical
alpha-representations would provide the definitive answer.

In practice, we found that it is sufficient to build a metric in the space of not pairs {U,F}
but products UF . One example of a suitable metric is given by the following rules (we assume
that a unique ordering of coefficients is available, as it is in any computer algebra system):

(i) Turn the polynomial of n variables with m terms into a matrix with rows corresponding to
monomials. The first column contains coefficients, and the subsequent columns contain the
(non-negative integer) exponents of variables x1, ..., xn.

(ii) Make n copies of the table. In the i-th copy, exchange the second column (corresponding
to x1) with the i-th column (originally corresponding to xi).

(iii) In all copies, sort rows lexicographically by the first two columns (i.e. compare only the
first two entries in each row).

(iv) Extract the second column from each copy (as vectors of length m), and determine the
lexicographically largest vector, comparing all m elements.

(v) In the table copies with the maximized second column, continue recursively: produce n− 1
copies-of-copies, in each select a different third column, sort by the three first entries, find
the maximum third column, discard non-maximal entries, etc.

(vi) The permutations of columns in the copies maximizing all columns (there can be a few due
to symmetries) can be taken as the “canonical permutations” of xi.

While there is a theoretical possibility of combinatorial growth in this strategy, we
have found this approach quite fast and practical to at least five-loop integrals. In our
example, after the canonical re-ordering, one easily establishes that U1F1(x5, x2, x3, x1, x4) =
U2F2(x5, x1, x4, x2, x3), i.e. I1 and I2 are indeed identical. After this identification it is easy to
find the relation between the loop momenta. The graphs, however, may differ as shown in Fig.2.

3. Analytic tensor reduction
A traditional approach to computing multi-loop integrals with tensor structures in numerators
is to decompose the result into all tensors allowed by the symmetries and then determine the

k
1
+ p

1

k
1

k
2

k
2
+ p

2

k
1
+ k

2

D 4

D 2

D 3

D 5

D 1

p
1

p
2

p
1

p
2

q
1

q
1
+ p

1

q
2
+ p

2
q

2

q
1
+ q

2

D 2 D 4

D 5

D 3 D 1

p
1

p
2

p
1

p
2

Figure 2. Graphs corresponding to integrals I1 and I2 after identical loop re-parametrization.

coefficients of the decomposition. Let us consider a simple one-loop example:∫
kµ1kµ2kµ3kµ4 · dDk

k2 +m2
= 〈kµ1 ...kµ4〉 =

∑
i

CiT
µ1...µ4
i . (5)

The tensors Tµ1...µ4i cannot depend on any external momenta, thus they may only be composed
of metric tensors. There are only three unique products: T1 = gµ1µ2gµ3µ4 , T2 = gµ1µ3gµ2µ4 , and
T3 = gµ1µ4gµ2µ3 .

The coefficients Ci can be found by multiplication of the original equation Eq. 7 with T1, T2,
and T3 and solving the system of equations:

T1µ1...µ4〈k
µ1 ...kµ4〉 = 〈(k2)2〉 = C1D

2 + C2D + C3D, (6)

T2µ1...µ4〈k
µ1 ...kµ4〉 = 〈(k2)2〉 = C1D + C2D

2 + C3D,

T3µ1...µ4〈k
µ1 ...kµ4〉 = 〈(k2)2〉 = C1D + C2D + C3D

2

The equality of all products on the left hand side implies that C1 = C2 = C3 = C, thus
reducing the number of independent equations to one, and we find C = [D(D + 2)]−1 〈(k2)2〉.

In this case, it is not difficult to generalize the formula to a general number of indices: the
result will be represented in terms of symmeterized product of metric tensors, and the coefficients
will contain a number of gamma-functions. In a higher number of loops, however, there exist
only a few general formulas. The two-loop generalization of Eq.7, first given in [7] involves
Gegenbauer polynomials, traceless tensors, and is much more computationally expensive due to
multiple nested summations. Tensor reduction may also be derived in terms of dimension shifts
and differential operators [8], but that is not very convenient in real calculations.

Instead, we suggest to directly use the method as outlined above for the fixed number of
indices. For illustration, let us consider a two-loop propagator-type integral with loop momenta
k1 and k2, and the external momentum p, where the formulas of Davydychev-Tausk still apply
(although with some effort), and limit ourselves with six open indices in the numerator.

In the left-hand side we can have seven distinct distributions of indices over the loop momenta
(e.g., 〈kµ11 kµ21 kµ31 kµ41 kµ52 kµ62 〉). On the right-hand side we may build 76 possible tensors out of
metric tensors and the components of the external momentum p (e.g., gµ1µ2pµ3gµ4µ5pµ6).

For each of the seven LHS combinations, the coefficients in front of the RHS tensors have
to be determined separately. Naively, in every case one would need to solve 76 equations with
76 variables. However, the example above gives us a hint: one may reduce the number of
independent variables by exploiting the symmetries. If the products of an LHS tensor with the
two RHS tensors coincide, so will the corresponding coefficients. In this case, one has at most
10 independent coefficients to determine (each time from 76 equations).

This procedure does not depend on the actual denominators of the integral: we only derive
a decomposition of the numerators. Thus, it is possible to pre-compute the tables with the
reductions for a sufficiently large number of indices and re-use them in different computations.

D
1

D
2

(a)
D

2

(b)
D

1

(c)

Figure 3. Original (linearly dependent, (a)) and fraction-decomposed ((b) and (c)) topologies.

One only needs a practical way to solve the systems of linear equations, where coefficients depend
on dimensionality D and possibly kinematic invariants. In our setup, we reuse the components
from the Laporta algorithm that perform Gauss reduction.

We have checked that this approach is indeed very practical: for example, our implementation
builds a table for all 4-loop propagator-type integrals with up to 6 indices in the numerator in
less than one hour with a regular PC.

4. Partial fractioning
Normally after the reduction to scalar integrals one has a long polynomial with terms that differ
in exponents of denominator factors, e.g.

diagram = D2
1D2 + 33D−11 D−22 − 45/16D1D

−1
2 + (ε+ 2)D2 + ..., (7)

D1 = k2 +m2, D2 = k2, i.e. linear dependence: D1 −D2 −m2 = 0.

(the corresponding graph is in Fig. 3 (a)). In what follows we will discuss general transformations
of monomials Da

1D
b
2, where a and b are positive or negative integer numbers.

The condition that D1 and D2 are dependent allows us to simplify such monomials. For
example, we may use the “classical” fraction decomposition relation

1

D1D2
→ 1

m2D2
− 1

m2D1
(8)

repeatedly to reduce any monomial with negative exponents a and b to a linear combination of
terms where at least one of a or b is non-negative.

The form where one of D1 and D2 is absent is preferable for the further computations. In
this case, the goal of the fraction decomposition is to identically re-arrange Eq. 7 so that each
term in the final expression could be identified with one of the “simpler” topologies in Fig. 3(b)
and (c).

However, the rule Eq. 8 alone does not achieve this goal. In particular, it does not apply
when b > 0, a < 0 and one has to apply the direct decomposition rule D2 → D1 −m2. In the
symmetric case b < 0, a > 0 it could be convenient to use D1 → D2 + m2, but applying both
those rules to monomials with a > 0 and b > 0 will not terminate. After the inspection of all
relevant cases one can find that that only a system of three rules

(D1D2)
−1 →

(
m2
)−1 (

D−12 −D
−1
1

)
, D2 → D1 −m2, D1/D2 → m2/D2 + 1 (9)

provides the complete decomposition.
The example above is relatively straightforward and can be easily done manually. However,

in practice one may have a much more complicated case for linearly dependent factors. In Fig. 4

p

p

p

p

D
1

D
4

D
5

D
7

D
6

D
3

D
2

Figure 4. Linearly dependent topology with two relations between denominator factors.

is a two-loop example of a topology in special kinematics, where p2 = −m2 and each massive
line has mass m. Here one has two relations between the seven factors:

2D1 −D4 −D5 − 4m2 = 0, (10)

2D2 − 2D3 +D4 −D5 + 2D6 − 2D7 + 4m2 = 0.

Let us formulate the problem in a slightly different way. First, let us get rid of the negative
powers of Di by introducing variables Yi = D−1i . Second, for all monomials Da1

1 ...D
a7
2 Y

a8
1 ...Y a14

7 ,
aj ≥ 0, let us introduce an ordering that incorporates our understanding of what is “simpler”.
In particular, it is beneficial to use linear weighting of exponent vectors (a1, ..., a14). Given two

such vectors ~a and ~b, we decide which of them is the “largest” by lexicographically comparing
the products M~a and M~b, where M is some square 14 × 14 matrix. One reasonable choice is

Mij =

{
1, if i ≥ j
0, otherwise

. The sum of all exponents is here the primary criterion, which agrees

with the intuitive definition that the monomials with fewer non-zero exponent are “simpler”.
Given this ordering, the problem is to re-arrange polynomial conditions Eq. 10 and the

additional relations DiYi − 1 = 0 into a set of equivalent relations that would unambiguously
reduce any given monomial to the “simplest” form (and would not lead to loops during the
repeated application).

As formulated above, exactly this problem is solved by the so-called Buchberger algorithm,
that generates a set of polynomials known as the Gröbner basis. We then need to interpret each
element of this basis (a polynomial p = 0) as a rule to substitute its most “complex” monomial
(according to ordering M) with the remaining terms. Quite conveniently, Mathematica has
a function GroebnerBasis[...] that is rather efficient and has an option MonomialOrder to
select the proper weight matrix M . In this particular case, this function produces a Gröbner
basis consisting of 14 polynomials that would be very difficult to derive manually. This output
can be directly translated to FORM code and used to decompose expressions of any complexity.

4.1. Acknowledgements
The author is indebted to A. Smirnov, K. Chetyrkin and M. Steinhauser for useful discussions.

5. References
[1] ’t Hooft G and Veltman M J G 1972 Nucl. Phys. B44 189–213
[2] Tkachov F V 1981 Phys. Lett. B100 65–68
[3] Chetyrkin K G and Tkachov F V 1981 Nucl. Phys. B192 159–204
[4] Smirnov V 2006
[5] Vermaseren J A M 2000 Math-ph/0010025
[6] Bogolyubov N N and Shirkov D V 1959 Introduction to the theory of quantized fields (Intersci. Monogr. Phys.

Astron. vol 3) (New York, USA: Interscience)
[7] Davydychev A I and Tausk J 1996 Nucl.Phys. B465 507–520 (Preprint hep-ph/9511261)
[8] Tarasov O 1998 Acta Phys.Polon. B29 2655 (Preprint hep-ph/9812250)

