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Abstract. The massive data processing in a multi-collaboration environment with
geographically spread diverse facilities will be hardly ”fair” to users and hardly using network
bandwidth efficiently unless we address and deal with planning and reasoning related to data
movement and placement. The needs for coordinated data resource sharing and efficient plans
solving the data transfer paradigm in a dynamic way are being more required. We will present
the work which purpose is to design and develop an automated planning system acting as a
centralized decision making component with emphasis on optimization, coordination and load-
balancing.

We will describe the most important optimization characteristic and modeling approach
based on ”constraints”. Constraint-based approach allows for a natural declarative formulation
of what must be satisfied, without expressing how. The architecture of the system,
communication between components and execution of the plan by underlying data transfer
tools will be shown. We will emphasize the separation of the planner from the ”executors” and
explain how to keep the proper balance between being deliberative and reactive. The extension
of the model covering full coupling and reasoning about computing resources will be shown.

The system has been deployed within STAR experiment over several Tier sites and has
been used for data movement in the favour of user analyses or production processing. We will
present several real use-case scenario and performance of the system with a comparison to the
”traditional” - solved by hands methods. The benefits in terms of indispensable shorter data
delivery time due to leveraging available network paths and intermediate caches will be revealed.
Finally, we will outline several possible enhancements and avenues for future work.

1. Introduction
Distributed computing offers large harvesting potential for computing power and brings multiple
benefits as far as it is properly exploited. On the other hand it introduces several pitfalls
including concurrent access, synchronization, communications scalability as well as specific
challenges such as answering key questions like “how to parallelize a task?” knowing where
my data and CPU power are located. In data intensive experiments, like the one from High
Energy and Nuclear Physics (HENP) community and the STAR 1 [1] experiment, the problem

1 Solenoidal Tracker at Relativistic Heavy Ion Collider is an experiment located at the Brookhaven National
Laboratory (USA). See http://www.star.bnl.gov for more information.



is even more significant since the task usually involves processing and/or manipulation of large
datasets.

For the colossal volumes of data being produced every year to be treatable, the technology
and system must be manageable. In global collaboration, the needs for coordinated resource
sharing and efficient plans solving the problem in a dynamic way are fundamental.

It is apparent that it will be hardly “fair” to users and hardly using network bandwidth
efficiently unless we address and deal with planning and reasoning related to data movement
and placement. We are addressing the paradigm of distributing the data focusing on one of the
largest running physics experiment in the present. The article exploits and applies the solving
techniques for designing and building the automated planning and transferring system; enabling
scientists to reach fruits of their research leveraging the potential of their resources.

2. Related works and problem analysis
The needs of large-scale data intensive projects arising out of several fields such as bio-informatics
(BIRN, BLAST), astronomy (SDSS) or HENP communities (STAR, ALICE) have been the
brainteasers for computer scientists for years. Whilst the cost of storage space rapidly decreases
and computational power allows scientists to analyze more and more acquired data, appetite for
efficiency in Data Grids becomes even more of a prominent need.

Decoupling of job scheduling from data movement was studied by Ranganathan and Foster in
[2]. Authors discussed combinations of replication strategies and scheduling algorithms, but not
considering the performance of the network. The authors of [3] proposed and implemented
improvements to the Condor, a popular cluster-based distributed computing system. The
presented data management architecture is based on exploiting the workflow and utilizing data
dependencies between jobs through study of related DAGs. Since the workflow in high-energy
data analysis is typically simple and embarrassingly parallel without dependencies between jobs
these techniques don’t lead to a fundamental optimization in this field.

Sato et al. in [4] and authors of [5] tackled the question of replica placement strategies
via mathematical constraints modeling an optimization problem in Grid environment. Solving
approach in [4] is based on integer linear programming while [5] uses Lagrangian relaxation
method [6]. The limitation of both models is a characterization of data transfers which neglects
possible transfer paths and fetching data from a site in parallel via multiple links possibly leading
to the better network utilization.

We focus on this missing component considering wide-area network data transfers pursuing
more efficient data movement. An initial idea of our presented model originates from Simonis
[7] and the proposed constraints for traffic placement problem were expanded primarily on links
throughputs and consequently on follow-up transfer allocations in time. One of the immense
advantages of the constrained based approach is a gentle augmentation of the model with
additional real-life rules. Constraints identify the impossible and reduce the realm of possibilities
to effectively focus on the possible, allowing for a natural declarative formulation of what must
be satisfied, without expressing how.

Designing and implementing the automated planning system in a dynamic environment like
Data Grid is, will not be fruitful unless we address the three main issues: (1) Accuracy of
estimation. Estimating the computation cost of a job (w.r.t. either computing or transfer) is
the key success factor, but at the same time the system can be hardly effective if it has to reason
about all peculiarities from the environment. The proper abstraction of the real world is needed
to provide balance between accuracy and complexity. (2) Adaptation to dynamic environment.
Pure static approaches assume that resource and task set is given and fixed over time. Since this
assumption is not always valid, the adaptation to the changing condition is needed. In other
words, the system has to provide proper balance between being deliberative and reactive at
the same time. (3) Separation of planner from executor. Fundamentally the first two issues are



related to the lack of collaboration between planner and executor. Without a cooperation the
planner cannot be aware of the grid environment change and cannot adapt to the more accurate
estimations.

3. Architecture
It is important to pay close attention to the architecture of the system - the conceptual glue
that holds every phase of a project together. In this section, we will describe the elements of the
system, properties and relations between them. We introduce briefly each component following
the work-flow (see Fig. 1 for illustration).

Let us start with explaining how requests are put into the system. End users (or stand-
alone services) generate requests using the web interface, written in PHP following the MVC
design pattern. There are two possible way how a request can be specified. a) either as an
encapsulation of the meta-data query (as understood by STAR’s File and Replica Catalogue),
or b) providing the list of files using filelist. An example of the catalogue query is:

• production=P10ik,

• filetype=daq reco MuDst,

• trgsetupname=AuAu39 production

where we specified type of the production (data set), what type of files we are interested in and
some trigger setup. This meta-data query covers about 220, 000 files with a total size of 48TB.
The population of the database with files belonging to the request is done asynchronously by
separate component as we will see soon.

The second approach of entering the request is using a filelist, which has the following syntax:

SITE;STORAGE;PFN

Each line then describes exact location of the file given by its physical file name, the storage
that holds it and finally the site where the storage is located.

The part of a request is also a desired destination for a data set (in the form of site + storage)
which user selects using the web interface.

Afterwards, the request is stored in a SQL database (system supports MySQL and
PostgreSQL) in a Catalog agnostic manner (any Catalog should work as far as they have a
LFN/PFN concept our approach relies on) with the additional information like user name,
group or date of the request.

Later, the component called File Feeder contacts the File and Replica Catalogue and makes
the query for the requested meta-data. The output information is stored back to the database,
including all possible locations for every file in a request. This is when population of the internal
database with file repositories happens. Because of usually large volume of records that needs
to be stored in a database, the File Feeder uses LOAD DATA INFILE syntax that provides high
performance.

The main logic and reasoning about the plan happens in the brain of the system, a component
called the Planner. It is the place where realization of the model is done and where the plan in
iterations is computed. Planner takes a subset of all requests for files to be transferred according
to the preferred fair-share function. It creates the plan (transfer paths, as we explained in the
previous chapter) for the selected requests and stores the plan back to the database.

The individual file transfers are handled by the separate distributed component called Data
Mover. As we specified at the beginning, we want to use existing point-to-point data transfer
tools and use them as the back-end instruments. The Data Mover should serve as an intelligent
wrapper on top of such tools handling the work. The role of these workers is to perform a
point-to-point data transfer on a particular link following the computed plan. The results and



Figure 1. Architecture of the system.

intermediate status is continuously recorded in the database and user can check the progress at
any time.

Because of the asynchronous nature of the communication between components, the system
has to have well defined states and transitions from one state to another given by state diagrams.
We will explain the flow in the following section. The Watcher, independent component running
at each site, is responsible for changing states of the objects and cache management.

We can see that the whole mechanism is a combination of deliberative (assuring optimality)
and reactive planning (assuring adaptability to the changing environment). Since this is crucial
to the argument, in the next section we will describe the respective two components (Planner
and Data Mover) serving up as a “reasoner” and a “worker”.

4. Implementation of the planner
Linear programming is a method of minimizing a given linear function (min cTx) with respect
to the system of linear inequalities (Ax ≤ c). Vector x represents the variables to be
determined. If all can be rational, the problem can be solved in polynomial time. However when
some or all of the variables must be integer, corresponding to pure integer or Mixed Integer
Programming (MIP) respectively, the problem becomes NP-complete (formally intractable).
Several algorithms from operation research are widely used for solving integer programming
instances in reasonable time. Reformulation of the problem into the set of linear inequalities
often involves relaxation of several constraints. In the following text we introduce the formulation
of the data transfer problem into the MIP syntax with involved approximations.

Since required datasets usually overlap together, we would like to minimize also the data
movement of the common parts. In other words, if the same file is required by different users
and the transfer paths share a link, we transfer the file on common link only once.

For this extension we have to slightly modify the constraint model, since the transfer path
for a file can form a forest - using the terminology from the graph theory.

We denote the weight of an edge corresponding to the link bandwidth as bw(e) - bandwidth
between two sites or average latency time for the storage elements (e.g. the time to stage the
file from the tape system). The information about file’s origins is a mapping of that file to a set
of nodes where the file is available.

The input received from the users is a set of file names F, where for every file f ∈ F we have
a set of sources orig(f) - sites where the file f is already available and a set of destinations
dest(f) - sites where the file f is supposed to be transferred.
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Figure 2. Two independent paths are glued together, so the file using their common links will
be transferred only once (e.g. the file is staged only once, then transferred to two different
destinations)

The essential idea is to use one decision variable for each file, its destination and edge in a
graph. We will refer to this {0, 1} variable as Xfed, denoting whether file f is routed (value 1)
over the edge e of the network or not (value 0) to its destination d. Mathematical constraints
(1-3), ensuring that if all decision variables have assigned values the resulting configuration
contains the independent transfer paths, are analogous to the Kirchhoff’s circuit laws.

∀f ∈ F, ∀d ∈ dest(f) :
∑

e∈∪OUT(n|n∈orig(f))

Xfed = 1,
∑

e∈∪IN(n|n∈orig(f))

Xfed = 0 (1)

∀f ∈ F, ∀d ∈ dest(f) :
∑

e∈OUT(d)

Xfed = 0,
∑

e∈IN(d)

Xfed = 1 (2)

∀f ∈ F, ∀d ∈ dest(f), ∀n /∈ orig(f) ∪ {d} :
∑

e∈OUT(n) Xfed ≤ 1
∑

e∈IN(n) Xfed ≤ 1

∑

e∈OUT(n)

Xfed =
∑

e∈IN(n)

Xfed
(3)

Having generated all independent paths for a file to each of its destination, we need to glue
them together. One can look at it as creating a forest using the terminology from the graph
theory (Figure 2). We achieve it by defining new binary two-index variable Xfe stating whether
file f uses link e (apart from reasoning about destinations).

∀f ∈ F, ∀e ∈ E, ∀d ∈ dest(f) : Xfed ≤ Xfe (4)

∀f ∈ F, ∀e ∈ E :
∑

d∈dest(f)

Xfed ≥ Xfe (5)

∀f ∈ F, ∀n /∈ orig(f) ∪ {d} :
∑

e∈IN(n)

Xfe ≤ 1 (6)

Finally, since we are minimizing the makespan, the time to transfer all files to the requested
destinations, we define the constraints (7) for estimation of the completion time T variable and
appropriate objective function: minimize T .

∀e ∈ E :
∑

f∈F

size(f) ·Xfe

bw(e)
≤ T (7)



4.1. Performance comparison
In this section we will elaborate on the performance of the automated system under different
environment configurations. The principal benefits of the solver depend on leveraging
available data services and network links between sites. Let us focus first on performance
comparison experienced by relying on data sources with diverse characteristic. All the following
measurements were taken in real production environment while monitoring other exterior
activities and requests for shared system resources. The monitoring included the control of
HPSS usage over submitting large-size requests, extensive WAN third-party transfers between
laboratories, etc. Therefore, the measurements spanning over several hours (and often repeated
multiple times) are statistically stable and sound.

The performance of the system can be nicely described by comparing the makespan - the time
it takes to bring requested files to the destination. It is important to see also the convergence,
how fast were files appearing at the destination. Hence, we will display this tendency as a
function of time in the following graphs. Figure 3 is displaying the comparison when the system
alternates reasoning about data sources. The transfer was required between STAR Tier-0 BNL
laboratory and Tier-1 center at LBNL, without involving any third site. We could concentrate
thereby entirely on data sources and eliminate the influence of diverse network paths. We were
comparing two data services which served as a source of the data. The services are in contrast
by different characteristic:

• HPSS - holds all the files, works asynchronously. Usually involves waiting time at the
beginning upon submission, then high throughput.

• Xrootd - holds only the portion of data, works synchronously. Usually provides low latency
and high throughput.

The comparison consists of three several hours long transfers when solver was acting always
in different mode. The blue line represents the mode when solver was using exclusively only
Xrootd as the source service. We can see that files started to appear almost immediately at the
destination and the slope of the line shows the fastest throughput. For better resolution the
small plot in the same figure is displaying the zoomed region in the first 40 minutes. However,
since Xrootd repository holds only a portion of all data, full data set could not be transferred.
What portion of data the service holds usually depend on the age of files. Files from recent
datasets are more likely available at Xrootd service. The red line represents the mode when
system was relying only on HPSS. We can see that there was an initial small waiting time until
files started to appear. More important is to realize also the “step-like” trend of the line. This
is caused by the HPSS utilization. HPSS prioritizes requests from different users depending on
tape locations, history, and other factors; and when there is our requests in turn, it serves the
files usually fast. During several hours our request can be postponed and others are prioritized
and we have to wait. Unfortunatelly, this “step” can often take several hours, depending on the
current circumstances and load. The third black line is representing the last mode, when the
system relied on both services concurrently. We can clearly see that the combination of both
sources outperforms counting on the stable but not the fastest one (HPSS) even if Xrootd cannot
provide all the files. Realizing which files where reside and coordinating the access to providing
services is not something what users can efficiently do by themselves and hence, they often rely
on the single one - stable but slow one. This is when automated solver can bring a significant
benefit and increase the effectivity of their work.

Let us bring our attention now to the system’s reasoning and utilizing diverse network paths.
For the purpose of keeping the environment transparent and eliminating the effect of multiple
data services, in this case we will concentrate on the sole Xrootd service as the source of all files.
The slow latency and constant modest bandwidth of this data service allow us to concentrate on
the influence of reasoning about network paths. The data transfer scheme is illustrated in Fig.4,
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Figure 3. Graph displaying the trend how fast is the plan fulfilled concentrating on 3 different
modes of source access. First one uses solely Xrootd service, second only the HPSS system, and
finally third one uses combination of both.

Figure 4. Transfer scheme for diverse network paths. Data movement relies on the Xrootd
service as the sole source of files while leveraging also intermediate LBNL site.

where data are being moved from BNL laboratory (Tier-0 center) to Prague site (Tier-2 center).
The system is allowed to reason also about intermediate site (LBNL laboratory, Tier-1 center) in
order to increase the throughput. It is important to state that the connection between the BNL
and Prague site is using static routing over dedicated link and is diverse from the path between
BNL and LBNL as well as LBNL and Prague (using ESnet, Geant, and CESNET routing). We
will again compare the speed how files appear at the destination service while looking at the
impact of using intermediate site in parallel.

The graph in Fig.5 is exposing this comparison. The green line represents the mode where
only direct BNL to Prague network path was used; while the red line the mode where also
additional path through LBNL site was allowed. We can see the clear and very visible benefit
in leveraging additional network path and routing part of the traffic via intermediate site. The
overall gain in makespan (how less user waited for files) was almost one third of total time
comparing to the direct and usual approach.
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Figure 5. Graph displaying the trend how fast is the plan fulfilled comparing 2 different modes
in network paths. Green line represents the mode when only direct transfer to Prague was
allowed and red one the mode when part of the traffic was allowed to be routed via LBNL site.

5. Coupling with CPUs
In the previous sections we addressed and focused on the data transfer problem, where the task
was to bring data sets to user specified locations. The role of the planner was to decide how to
achieve it considering all constraints and having minimal makespan as an objective. However,
very often the task is not finished by the time data are moved, but when data are analyzed. In
other terms, the data movement itself only precedes the data processing.

Let us underline the benefit of CPU coupling by explaining the real case with production
processing in STAR (see Fig. 6). Part of the production is being done at Argonne computing
cloud (Chicago) together with PDSF/NERSC computing center (Berkeley). The workflow is
following: files are continuously staged from BNL’s HPSS system to the local 2TB cache. Since
Argonne cloud is not equipped with any cache, the file can be transferred from BNL to Argonne
only if there is a free CPU slot. To the contrary, PDSF site has sufficient 20TB cache and can
hold data even if all the CPU slots are occupied. Therefore, and this is being solved by
hand, it turns out that it is advantageous to feed Argonne’s CPUs (when free) simultaneously
from BNL and PDSF cache. If we had a system capable of dynamically solve this in automatic
fashion the benefits could be clearly seen.

While in the pure file transfer problem the task was to locate and bring files to requested
destinations, with CPU coupling the problem has to be reformulated. A user doesn’t specify
a single destination anymore, but a list of available processing sites along the full set of files.
Each request Ri is therefore composed of set of files which need to be processed (FRi

) together
with a set of destinations - processing sites (DRi

) where user is allowed to run jobs (Eq. 8). By



Figure 6. Representation of production processing using Argonne cloud with no cache space
and PDSF farm with 20TB cache. Because of limited cache at BNL it turns out practical to
feed Argonne cloud with data streaming from both coasts (PDSF and BNL).

saying allowed we mean that user has access and can run jobs on any of these sites.

Ri = {{f1, . . . , fNi
}

︸ ︷︷ ︸

FRi

, {d1, . . . , dMi
}

︸ ︷︷ ︸

DRi

} (8)

The task of the planner is to find transfer paths for all files (every file has to appear in one of
the destinations for each request it belongs to) considering the processing phase of the file at
the computing site. The system may distribute files from a request among available destinations
and execute job on the portion of data set at computing site A while on the other fraction of
data set at computing site B.

The MIP model for sloving the pure file transfer problem can be reformulated and extended
in such a way that it includes also the CPU reasoning. We will omit here the full set of
mathematical constraints due to the length of the article. However, there is one difference in
model’s logic we would like to point out and explain.

If we look back into our initial motivation from Fig. 6, displaying the production processing
schema in STAR, we can see that there is a substantial benefit of bringing files to the storage
cache - closer to the processing sites, even if all the slots are used. The model, as it is defined
above, reasons about bringing files to the processing sites since they are assigned as the only
destinations. If the processing sites are occupied we would still like the solver to reason about
bringing files to the storage space closer to the CPUs. In order to modify the reasoning we can
create additional dummy links from the storages to the dummy destination vertex in the graph
as represented in Fig. 7. The weights for these additional dummy edges need to be properly
set so the solver will prioritize bringing files to the cache space in case the processing slots are
taken. By setting the appropriate weight we can also control the preference between storage
spaces.

6. Conclusions
The work presented in this paper deals and attacks the complex problem of efficient data
movements on the network within a distributed environment. The problem itself arises from the
real-life needs of the running nuclear physics experiment STAR and it’s requirements for data
storage and computational power.



Figure 7. Representation of production processing using Argonne cloud as the graph input for
the model. The storage cache nodes are also connected to the dummy destination in order to
allow the model to bring files closer to the CPUs while they are taken by other jobs.

To our best knowledge, it has been the first time in nuclear physics large scale experiments
when automated planning approach was used for reasoning about data transfers and CPU
allocations. We presented the underlying model using Mixed Integer Programming techniques
and provided the inside view into the design and concept of the architecture. Implementation
and coupling of components with standard STAR services proceeded with a real-case evaluation
of the framework. We have demonstrated that this concept leads not only to the better comfort
for physicists when dealing with data transfers but also brings fruits in the efficiency, load
balancing and fail-over handling as was primarily requested.

With upcoming requirements for more frequent Cloud computing where data storage is
constrained and the needs for prompt feeding CPUs by data is important, the automated data
transfers and job allocation can greatly simplify the user’s task. We have addressed this and
proposed the extension of the model for reasoning about computational power as well.

The journey to the fully automated and intelligent system scheduling user’s tasks considering
all relevant constraints is certainly long and there are still numerous aspects that need to be
addressed. We believe that the presented work contributed to this collaborated effort with
several sound ideas, techniques and concepts.
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