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Abstract. A Key feature of the minimal supersymmetric extension of the Standard Model
(mssm) is the existence of a light Higgs boson, the mass of which is not a free parameter but
an observable that can be predicted from the theory. Given that the lhc is able to measure
the mass of a light Higgs with very good accuracy, a lot of effort has been put into a precise
theoretical prediction.

We present a calculation of the susy-qcd corrections to this observable to three-loop order.
We perform multiple asymptotic expansions in order to deal with the multi-scale three-loop
diagrams, making heavy use of computer algebra and keeping a keen eye on the numerical error
introduced.

We provide a computer code in the form of a Mathematica package that combines our three-
loop susy-qcd calculation with the literature of one- and two-loop corrections to the Higgs mass,
providing a state-of-the-art prediction for this important observable.

1. Introduction
The minimal supersymmetric extension of the Standard Model (mssm) is a promising candidate
for physics beyond the Standard Model. Its Higgs sector is a two-Higgs doublet model with
the additional constraint that supersymmetry relates the quartic Higgs couplings to the gauge
couplings of the theory. This increases the predictiveness of the model and allows the Higgs
sector to be parametrised by just two new parameters, the mass MA of the pseudoscalar Higgs
and the ratio tanβ of the vacuum expectation values of the Higgs doublets.

In particular, the mass Mh of the light Higgs boson is not a free parameter, but can be
predicted. At tree level, Mh is bounded above by MZ , but radiative corrections shift the value
significantly. Since Mh will be a precision observable once the Higgs is found at the Large
Hadron Collider (lhc), it is imperative to have a precise theoretical prediction. Consequently,
a lot of effort has been put into the calculation of radiative corrections to Mh at the one- and
two-loop level (see, for example [1, 2, 3, 4, 5, 6, 7, 8]). The remaining theoretical uncertainty
has been estimated to be about 3− 5 GeV [9, 10], which is confirmed by a study of the leading
and next-to-leading terms in ln(MSUSY /Mt), where MSUSY is the typical scale of susy particle
masses, at three-loop order [11].

This uncertainty of the theoretical prediction justifies a calculation of the next term in the
perturbative expansion. A study of the corrections to Mh shows that the contributions from
loops of top quarks and their superpartners, the stops, are dominant at the one- and two-loop
level. In [12, 13], we have calculated three-loop susy-qcd corrections to these diagrams. The
calculation of these terms is the subject of this talk.



2. Calculation of the Three-Loop Corrections
Motivated by the discussion above, we restrict the calculation at the three-loop level to the
susy-qcd corrections where the Higgs couples to a top quark or its superpartners. In the
perturbative expansion of Mh, these are the terms of O

(
αtα

2
s

)
, where αs is the strong coupling

and αt denotes the coupling of the Higgs to the top quark.
We thus have to evaluate three-loop propagator diagrams in susy-qcd, which faces us with

two complications. First, we need a convenient regulator that respects supersymmetry, and
second, a lot of masses appear in our diagrams.

2.1. Regularisation by Dimensional Reduction
The regularisation workhorse of multi-loop calculations is dimensional regularisation (dreg) [14],
where the number of spacetime dimensions is altered from 4 to d = 4− 2ε, and the divergences
of the loop integrals are manifest as poles in ε.

Unfortunately, dreg does not respect supersymmetry. An easy way to see this is that
changing the number of spacetime dimensions also changes the number of degrees of freedoms of
the vector fields, and supersymmetry requires an equal number of bosonic and fermionic degrees
of freedom. While it is possible (but tedious) to manually construct finite counterterms that
restore the supersymmetric ward identities, a more convenient approach was suggested by Siegel
under the name of dimensional reduction (dred) [15]. The main idea is that the change of
dimensions need only affect momenta in order to regularise the loop integrals. In dred, one
splits the four dimensional space into orthogonal spaces of dimension 2ε and d = 4 − 2ε, and
restricts the loop momenta to the d dimensional subspace while all gauge fields are kept four
dimensional. The 2ε components of the gauge fields transform as a 2ε tuple of scalar fields and
are called ε-scalars.

The consistent formulation of dred is more involved than sketched here [16], and the question
whether the inclusion of the ε-scalars truly restores the supersymmetric ward identities in all
cases is not yet resolved. However, dred has successfully been applied in many multi-loop
calculations[17, 18, 19, 20, 21, 22, 23, 24, 25, 26], so far without observing a violation of the
ward identities.

2.2. Asymptotic Expansion in the Masses
The difficulty of calculating a Feynman diagram rises with the number of loops, the number of
external momenta and the number of masses in the diagram. To obtain the O

(
αtα

2
s

)
terms of

Mh, we have to evaluate diagrams with three loops, two legs and a lot of masses: treating the
light quarks as massless and their superpartners as mass degenerate with mass Mq̃, we are left
with five masses: the top quark mass Mt, the masses of its superpartners Mt̃1

, Mt̃2
, the mass of

the gluino Mg̃ and Mq̃. Calculating these diagrams without any approximations is not feasible
with contemporary methods.

Given the mild dependence of the one-loop corrections to Mh on the external momentum,
it is reasonable to expand the diagrams in small external momentum, reducing the problem to
the evaluation of vacuum diagrams. A further simplification is possible by performing nested
asymptotic expansions [27, 28, 29, 30], which expresses the multi-mass diagrams as a series in
ratios of the masses and logarithms of these ratios. The coefficients in the series involve only
one-scale integrals. Assuming that the ratios of the masses are small, the series should give good
approximations to the original diagrams.

Of course, before carrying out the asymptotic expansions, one has to identify which mass
ratios are small. Given that so far none of the superpartner masses are known, this is an
undecidable problem. So, instead of calculating with a fixed, known, hierarchy among the
masses, one has to systematically consider various possible mass hierarchies and carry out the
calculation for each of these. To get a prediction of Mh for a specific point in the parameter
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Figure 1. Behaviour of the perturbative series for Mh using the on-shell and the minimal
subtraction scheme (for degenerate superpartner masses). The short-dashed, long-dashed and
solid lines are the one-, two-, and three-loop approximation to Mh, respectively. In the on-shell
scheme, the distance between one- and two-loop approximation is much larger than in the dr
scheme.

space of the mssm, where the masses of the superpartners have specific values, one has to choose
whichever hierarchy fits these values best.

We carry out the calculation using the following setup: In a first step, all diagrams
contributing to Mh at O

(
αtα

2
s

)
are found using the program qgraf [31]. There are 30.717

diagrams. For each hierarchy, these diagrams are expanded asymptotically using q2e/exp [32].
The one-scale integrals are then calculated using the form [33] program matad [34].

2.3. Renormalisation
For the renormalisation of the parameters entering our calculation, we adopt a variation of the
dr-scheme, i.e. minimal subtraction using dimensional reduction. This leads to a much better
behaviour of the perturbative series compared to using on-shell renormalisation (see Fig. 1).

3. Computer Code
In order to provide a precise prediction for the value of Mh within the mssm, our O

(
αtα

2
s

)
terms have to be combined with the wealth of corrections from other sectors of the mssm
at one- and two-loop level that are available in the literature [1, 2, 3, 4, 5, 6, 7, 8]. Also,
the choice of hierarchy mentioned in 2.2 should be automatised. In [13], we have presented
the Mathematica package H3m, which is publicly available, to address these points. For
convenience, it implements the Susy Les Houches Accord slha [35] and has an interface to the
spectrum generators softsusy [36], SuSpect [37] and SPheno [38].

The program uses FeynHiggs [39, 9] to get a two-loop approximation of Mh. An obstacle
for adding our terms of O

(
αtα

2
s

)
to the result delivered by FeynHiggs is the usage of on-shell

renormalisation in FeynHiggs. In order to be consistent, we have to convert the O (αt) and
O (αtαs) terms that contain on-shell parameters to the dr scheme. Thanks to [7], which gives
a compact expression for these terms both in the dr and in the on-shell scheme, this obstacle is
easily overcome.

The corrections to Mh depend very strongly on the mass Mt of the top quark and the strong
coupling αs. These parameters must be known, within susy-qcd renormalised in the dr scheme,
as precisely as possible. In [40], the relation between the top mass in the dr- and the on-shell
scheme in susy-qcd has been calculated to O

(
α2
s

)
. Using the library tsil [41], this relation

can be used to obtain Mdr
t from the known value of the top quark pole mass.

We determine αs in susy-qcd from the value of αs in five-flavour qcd at the Z mass
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following [42] by running, within five-flavour qcd, to the decoupling scale where we perform
the transition to the full theory. We then run, within susy-qcd, to the desired value of the
renormalisation scale.

In order to choose the most appropriate hierarchy and get an estimate for the error introduced
by the asymptotic expansion, we compute an approximation to the two-loop corrections of
O (αtαs) using asymptotic expansions in the mass ratios and compare this approximation to
the result of [7]. The hierarchy that matches the exact two-loop result best is chosen for the
calculation of the three-loop term, and the error at two-loop level is recorded to get a handle on
the error in the three-loop result (see Fig. 4).

4. Numerical Results
In this chapter, we present a state-of-the-art numerical prediction for Mh in the msugra model
that has been obtained with H3m. Fig. 2 shows the dependence of Mh on the parameters m1/2,
m0, tanβ, and A0 for µ > 0. The shaded bands around the individual curve show the variation
of Mh when Mt is varied between 171.4 GeV and 174.4 GeV. We restrict the plot to values of
m1/2 > 300 GeV in light of the latest exclusions from the lhc experiments [43, 44, 45, 46].

We observe that of all msugra parameters, varying m1/2 has by far the largest impact on
the Higgs mass. We also observe that the present uncertainty of the top mass directly translates
to a parametric uncertainty of about one GeV of the Higgs mass.

To estimate the effect of unknown higher orders, Fig. 3 shows the two- and three-loop
corrections to Mh. We observe a partial cancellation between the two- and three-loop correction.
We also observe that while the higher order corrections do decrease in magnitude, they do not
do so by a large factor. Thus, we should be careful when estimating the magnitude of the
missing higher order contributions. We choose to assign 50 % of the three-loop contribution as
a theoretical error. This amounts to a hundred MeV for low values of m1/2 and to about one
GeV for m1/2 above one GeV. Using the scale variation as an error estimate would lead to a
smaller error [13].

By performing asymptotic expansions, we have introduced an additional source of uncertainty
to the prediction of Mh. With Fig. 4, we can analyse how large this uncertainty is. It shows
the error that we would have introduced had we made the same approximation at the two-loop
level. We see that this error is typically at or below 100 MeV, or 200 MeV for low values of m1/2

and tanβ. Since the three-loop corrections are smaller than the two-loop corrections, we expect
the actual error due to asymptotic expansions to be below 100 MeV.

5. Conclusions
We have presented a calculation of the O

(
αtα

2
s

)
corrections to the mass Mh of the light Higgs

boson in the mssm. These contributions shift the value of Mh by 1− 3 GeV, depending on the
mass spectrum of the superpartners.

The results have been implemented in the program H3m, which is freely available [13].
Using our results, we improve the theoretical error significantly. The theoretical error is now

on the order of about 100 MeV for light and 1 GeV for heavy superpartner masses. This is
comparable to the parametric uncertainty with the top mass and αs.
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Figure 2. Theoretical prediction for the light Higgs mass in the msugra model. We plot Mh

over the fermion mass parameter m1/2. The panels show, from left to right, an increasing value
of tanβ, and, from top to bottom, of the scalar mass parameter m0. We show three curves
according to different values of the trilinear coupling A0.
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