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Abstract. A frequently faced task in experimental physics is to measure the probability
distribution of some quantity. Often this quantity to be measured is smeared by a non-
ideal detector response or by some physical process. The procedure of removing this smearing
effect from the measured distribution is called unfolding, and is a delicate problem in signal
processing, due to the well-known numerical ill behavior of this task. Various methods were
invented which, given some assumptions on the initial probability distribution, try to regularize
the unfolding problem. Most of these methods definitely introduce bias into the estimate of
the initial probability distribution. We propose a linear iterative method (motivated by the
Neumann series / Landweber iteration known in functional analysis), which has the advantage
that no assumptions on the initial probability distribution is needed, and the only regularization
parameter is the stopping order of the iteration, which can be used to choose the best compromise
between the introduced bias and the propagated statistical and systematic errors. The method
is consistent: “binwise” convergence to the initial probability distribution is proved in absence
of measurement errors under a quite general condition on the response function. This condition
holds for practical applications such as convolutions, calorimeter response functions, momentum
reconstruction response functions based on tracking in magnetic field etc. In presence of
measurement errors, explicit formulae for the propagation of the three important error terms
is provided: bias error (distance from the unknown to-be-reconstructed initial distribution at a
finite iteration order), statistical error, and systematic error. A trade-off between these three
error terms can be used to define an optimal iteration stopping criterion, and the errors can
be estimated there. We provide a numerical C library for the implementation of the method,
which incorporates automatic statistical error propagation as well. The proposed method is also
discussed in the context of other known approaches.

1. Introduction

In data analysis one commonly faces the problem that the probability density function (pdf)
of a given physical quantity of interest is to be measured, but some random physical process,
such as the intrinsic behavior of the measurement apparatus, smears it. The reconstruction
of the pertinent pdf based on the measured smeared pdf and on the response function of the
measurement procedure is called unfolding. To be specific, let us have the original unknown
pdf x 7→ f(x) of the undistorted physical quantity which we need to reconstruct, and assume
that the actual measured pdf can be expressed of the form y 7→ g(y) =

∫

ρ(y|x) f(x) dx, where
(y, x) 7→ ρ(y|x) describes the smearing effect in a probabilistic manner.1 Then, it is said that

1 All pdfs are understood to be real valued non-negative Lebesgue integrable functions over some finite
dimensional real vector space X.



the pdf g is the pdf f folded with the response function ρ.2 Our mathematical task is to solve
the above linear integral equation in order to obtain f , given g and ρ. This problem is known
not to be a simple numerical task (ill-posed problem), and several methods are used by the data
analysis communities in order to regularize the problem (for an overview on the most popular
approaches, we refer to [1, 2]).

Let us denote by Aρ the pertinent folding operator, which acts like (Aρf) (y) =
∫

ρ(y|x) f(x) dx on a function f at a point y.3 Given the measured pdf g = Aρf , the problem
of unfolding can then be formalized as follows: the pdf f = A−1

ρ (g) is to be determined or
approximated. The mathematical cause of the numerical ill-posedness of this unfolding problem
can then be put forward as: the inverse A−1

ρ of a generic folding operator can be shown not to be

continuous despite the forward folding operator Aρ always being continuous4 (this phenomenon
is discussed in detail e.g. in [9]). The non-continuity of the inverse folding operator A−1

ρ may
be also reformulated in a less abstract manner: initially distant functions can be mapped close
by the folding operator Aρ, as illustrated in Figure 1. I.e. one can lose discriminating power
between pdfs upon a folding.
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Figure 1. Illustration of the non-continuity of the inverse of a folding operator Aρ: two
distant functions f1 and f2 may be mapped close by the folding – distance of functions are
here understood as probabilistic distance, i.e. in the L1(X) function norm.

A further aspect of the numerical ill-posedness of the unfolding problem is that in practice
the folded pdf g is often obtained via statistical measurements (e.g. histograming), and therefore
is contaminated by statistical errors. I.e. in reality g = Aρf + e holds instead of the idealized
equation g = Aρf , where e(x) is a random variable for each point x (or for each histogram bin –
in the language of histograms). Thus, when estimating the unfolded pdf as A−1

ρ (g) = f+A−1
ρ (e),

the contribution of the second term is not guaranteed to remain small due to the non-continuity
of the inverse folding operator A−1

ρ even when e is initially known to be small. On top of this, the
statistical error term e may contain modes not within the image of the folding operator Aρ, on
which the evaluation of the inverse operator A−1

ρ is not meaningful if the problem is not initially
discrete. These effects are demonstrated in Figure 2, which shows that simple inversion of the
discretized folding operator on the measured pdf gives unphysical numerical result: a result very
different from the initial pdf, having large negative and positive alternating amplitudes.

In order to regularize the numerical ill-posedness of the unfolding problem, various methods
are used. These methods can be divided into three large classes.

(i) Using a parametric Ansatz for f , and fit parameters, so that Aρf gets close to g. This
method can be slightly insensitive to the details of the true f (as illustrated in Figure 1),

2 Whenever the response function ρ is translation invariant in the sense that for all x, y, z ∈ X one has
ρ(y + z|x) = ρ(y|x − z), the folding is specially called convolution, and in that case ρ may be expressed by
a single pdf: ρ(y|x) = ρ(y − x|0).
3 To be precise, Aρ is a L1(X) → L1(X) continuous linear operator, where L1(X) denotes the normed space
of complex valued integrable functions over the vector space X. The response function ρ is assumed to be
ρ(·|x) ∈ L1(X) for all x ∈ X.
4 Continuous in the L1(X) → L1(X) sense.
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Figure 2. (Color online) Demonstration of the numerical ill-posedness of the unfolding
problem: a Cauchy distribution is convolved with a Gauss distribution with Monte Carlo
method to generate the measured distribution contaminated with statistical errors. Clearly,
the unfolded pdf, obtained by simple numerical inversion of the discretized folding operator on
the measured pdf gives physically unreasonable numerical result: large alternating positive /
negative amplitude pdf values.

and of course can introduce strong systematic bias on the result if the parametric Ansatz
does not hold in an exact manner of the form that was assumed. Such methods are used in
general for inclusive particle identification by specific ionization (see e.g. [10]).

(ii) Bin-by-bin fitting of the bin values of the histogramed f , so that Aρf gets close to g. This is
basically equivalent to the naive inversion of the discretized folding operator, and therefore
produces similar oscillatory results, except when an artificial penalty function is added to
the χ2 in order to suppress large local gradients. In that case, the method can provide
meaningful answers, but the introduced systematic bias is difficult to quantify. Similarly to
the parametric Ansatz method, the fit can be slightly insensitive to the details of the true
f . Most popular methods, such as SVD method [3], are based on this idea.

(iii) The iterative method of convergent weights (also known as iterative Bayesian unfolding)
of Kondor-Mülthei-Schorr-d’Agostini [4, 5, 6, 7, 8]. This method is, as opposed to the
previously mentioned methods, is non-linear. On the other hand, by construction it
preserves positivity and integral of the initial pdf, and therefore maps a pdf exactly into
a pdf, which does not hold for linear methods, thus, this approach is quite favorable for
statistical applications. Regularization is achieved solely by stopping the iteration at a finite
order. However, there is no known proof yet if the iterated pdfs converge5 to the initial
to-be-reconstructed pdf in a non-discrete scenario, even in the absence of measurement
errors [6]. Also propagation of statistical and systematic errors of the measured pdf to the
unfolded pdf has not been investigated, and consequently no generally applicable iteration
stopping condition is known.

In a previous paper [9] we proposed a linear iterative unfolding method, for which under certain
conditions convergence to the initial pdf was proved analytically for some unfolding problems
in probability theory (such as convolutions), and due to the linearity of the method, exact

5 In case of an iterative unfolding method it is an absolute must to show that the sequence of iterated unfolded
pdfs converge to the initial one, in the absence of measurement errors (consistency of the method).



propagation of statistical errors of the measured (folded) pdf to the unfolded pdf was possible.
In this paper we propose an improved version of that algorithm, which could be proved to
be convergent in quite general cases for unfolding problems in a probability theory setting.6

The key equality of the convergence proof leads to explicit error propagation formulae for the
three important error terms: for the bias error (distance from the true unfolded pdf), for the
propagated statistical error, and most notably for the propagated systematic error, which is
of great importance in reporting experimental results. An implementation of the algorithm is
written as C library, along with application examples [13]. The implementation also incorporates
automatic statistical error propagation.

The paper is organized as follows: in Section 2 the algorithm and its convergence theorem
shall be formulated, Section 3 is devoted to the corresponding error propagation formulae which
help to formulate an optimal stopping criterion and error estimates therein, while in Section 4
we demonstrate our method on examples.

2. A linear iterative unfolding algorithm

We provide now a linear iterative solution for a probability theory unfolding problem of the
form g = Aρf , where f is the initial (unknown) pdf, g is the folded (measured) pdf, and ρ

is the response function. Given the response function ρ, one can also define along with the
folding operator Aρ the transpose folding operator AT

ρ by swapping the variables of the response

function.7 Then, one can attempt to approximate the true unfolded pdf f in the following way:
define the function sequence by setting the normalization factor

Kρ = max
x

∫ ∫

ρ(y|z) ρ(y|x) dy dz

and then taking the

f0 = K−1
ρ AT

ρ g,

fN+1 = fN +
(

f0 −K−1
ρ AT

ρAρfN

)

iteration formula. We provide a convergence result on this iterative approximation below in
absence of measurement errors on g (which is necessary for the consistency of the method).

Theorem 1. (Convergence) The function sequence N 7→ fN resulting from the above iteration
scheme converges to the closest possible function to the true unfolded pdf f in the average over
any compact region, whenever the normalization factor Kρ is finite. I.e. for all compact sets
S ⊂ X one has

lim
N→∞

1

Volume(S)

∫

S

(

f − PKer(Aρ)f − fN

)

(x) dx = 0.

Here, PKer(Aρ) denotes the orthogonal projection operator to the kernel set of Aρ, and thus
PKer(Aρ) = 0 holds automatically whenever Aρ is invertible. In addition, the convergence shall
also hold in the space of square-integrable functions, i.e. one has also

lim
N→∞

∫

∣

∣

∣f − PKer(Aρ)f − fN

∣

∣

∣

2
(x) dx = 0.

6 The detailed mathematical proof of convergence shall be published elsewhere: [11]. The proposed iteration
scheme was motivated by the so called Neumann series and Landweber iteration [12] known in functional analysis,
but the convergence of neither iterations hold, unfortunately, in a probability theory setting in their original form,
as one can prove. Our improved iterative algorithm, however, is specially developed to be convergent for unfolding
problems in probability theory.
7 The transpose folding operator is defined by (AT

ρ f)(y) =
∫

ρ(x|y) f(x) dx for all functions f and points y. Note,
that this simply translates to matrix transposition whenever the folding is discretized.



Proof The proof is based on Riesz-Thorin theorem and on the spectral representation of
positive operators in the space of complex square-integrable functions over X (to be published
in a more mathematically specialized journal: [11]).

The following observations help to shed some further light on properties of the proposed
unfolding algorithm.

(i) In case the pdfs are modeled with histograming, the setwise convergence of pdfs means
binwise convergence of histograms, i.e. the probability of each histogram bin is restored in
the limit of infinite iterations.

(ii) When the inverse of Aρ exists, the original pdf f is completely restored. Whenever the
pertinent inverse does not exist, still the maximum possible information about f is restored,
namely the function f − PKer(Aρ)f .

(iii) Whenever Aρ is a convolution, then Kρ = 1 holds automatically, i.e. Kρ < ∞ is satisfied.

(iv) The convergence condition Kρ < ∞ holds provably for a wide class of practically relevant
response functions, such as energy response function of calorimeters, momentum response
function of track reconstruction in magnetic field etc.

(v) The iteration scheme of the theorem is motivated by the Neumann series known in functional
analysis. A similar iterative solution, also referred to as Landweber iteration [12], is known
in the theory of Fredholm operators. In probability theory unfolding problems, however,
the necessary convergence criteria for Neumann series or for Landweber iteration do not
hold in their original form.

(vi) The proposed iterative unfolding algorithm does not necessarily need an initial binning
of pdfs. It may be implemented as well by different density estimators than histograms.
However, when the pdfs are modeled by histograms, one may recognize that the binning and
truncation of histograming domain can also be considered as folding operator. Therefore,
the histogram binning and truncation effect may be included in the response function ρ,
and then the effect of histograming can be unfolded (to the maximum possible extent) as
well. If one wants to numerically implement this, the initial pdf f must be assumed to
better approach the continuum pdf, i.e. must be assumed to be an unknown histogram
over a larger domain with finer granulation than the folded one. The schematic of such
possible rebinning trick is illustrated in Figure 3.

Aρ

Figure 3. (Color online) Illustration the rebinning trick for unfolding the histogram binning
and domain truncation as well (to the maximum possible extent) along with the smearing effect
of the response function ρ. For this, the implementation of the folding operator Aρ must map
histograms over a larger domain and with finer graining to histograms with the binning scheme
of the measured (folded) pdf.



3. Bias, statistical and systematic errors of the unfolded distribution

In real measurements, the folded pdf g also admits statistical and systematic errors, and the
propagation of these terms into the unfolded pdf is necessary to quantify at each finite iteration
step. The key equality of the proof of Theorem 1 leads to explicit error propagation formulae
for bias error (distance from the true unfolded pdf), statistical error, and systematic error. First
we present our result about bias error.

Theorem 2. (Bias error) Take the iterative solution for the unfolding problem as in Section 2.
Then, if the normalization factor Kρ is finite, the distance of an N -th iterate fN from the closest
possible function to the true unfolded pdf f in the average over a compact region has the following
upper bound: for any compact set S ⊂ X one has

∣

∣

∣

∣

1

Volume(S)

∫

S

(

f − PKer(Aρ)f − fN

)

(x) dx

∣

∣

∣

∣

≤ 1
√

Volume(S)

1

N + 2

√

∫

|f |2(x) dx,

i.e. the residual deviation of fN from the limit averaged to the set S decreases as 1√
Volume(S)

and

as 1
N+2 .

The above result, translated to the language of histograms means that the bin-by-bin average
deviation from the true unfolded pdf is bound by the right hand side of the inequality in
Theorem 2., where Volume(S) is the histogram bin volume, N is the iteration order, and
√

∫

|f |2(x) dx is an unknown coefficient depending on the true unfolded pdf f . This unknown

coefficient, however, may be substituted by the calculable expression
√

∫

|fN |2(x) dx for large

N . It is seen that the bias error tends to zero with increasing iteration order N .
In practical applications, the pdfs are often measured by statistical methods (e.g.

histograming). In that case, the value of the folded pdf g in each histogram bin admits a
statistical error. The below theorem states an exact formula for the propagation of this error
into the unfolded pdf.

Theorem 3. (Statistical error) Take the iterative solution for the unfolding problem as in
Section 2. Let C be the covariance matrix of the measured pdf g, where g is assumed to be
of the form of a histogram. Since a covariance matrix C is positive definite, it is always possible
to decompose it – not uniquely – in the form C = E ET for some matrix E, (·)T being the
matrix transpose. (Whenever C is diagonal, construction of such an E is just trivial.) Then,
the following iteration calculates the statistical error propagation:

E0 = K−1
ρ AT

ρE,

EN+1 = EN +
(

E0 −K−1
ρ AT

ρ AρEN

)

,

where in each step the covariance matrix of fN shall be CN = EN ET
N .

Due to the linearity of the method, the contribution of the propagated statistical error term
is exactly calculable by means of the above formulae, if it is known for the measured pdf g. This
error term increases with increasing iteration order N . The statistical error of a given histogram
bin of the N -th iterate fN is nothing but the square-root of the corresponding diagonal element
of CN .

Whenever the folded pdf g is a result of an experiment, it may admit a systematic error δg.
Also the systematic error δρ of the response function ρ may give a non-zero contribution to it:
Aδρf . The effect of this initial systematic error on the unfolded pdf is quantified by the following
theorem.



Theorem 4. (Systematic error) Take the iterative solution for the unfolding problem as in
Section 2. Assume that δg is the systematic error of g (possibly including contribution from
systematic error of the response function). Then the systematic error for the N -th iterate fN
averaged over a compact region has the following upper bound: for any compact set S ⊂ X

∣

∣

∣

∣

1

Volume(S)

∫

S
δfN (x) dx

∣

∣

∣

∣

≤ 1
√

Volume(S)

(

Ψ(N + 2) + γ
)

√

∫

∣

∣

∣K−1
ρ AT

ρ δg
∣

∣

∣

2
(x) dx,

i.e. the systematic error of fN averaged to the set S decreases as 1√
Volume(S)

and increases as

Ψ(N + 2) + γ ≈ 1 + ln(N + 1). (Ψ being the digamma function, γ being Euler’s constant.)

The above result, translated to the language of histograms means that the bin-by-bin average
systematic error of the N -th iterate fN is bound by the formula in the right hand side of the
inequality in Theorem 4., where Volume(S) is the histogram bin volume, N is the iteration order,

and the coefficient

√

∫

∣

∣

∣K−1
ρ AT

ρ δg
∣

∣

∣

2
(x) dx is calculable knowing the bin-by-bin systematic errors

δg of the measured pdf g. Clearly, this contribution increases logarithmically with increasing
iteration order N .

As the bias error decreases, while the statistical and systematic error of the N -th iterate fN
increases with the iteration order N , a trade-off between these error terms provides an optimal
cutoff criterion8 in the iteration order N , and error estimates therein. Consequently the true
unfolded pdf f can be approximated optimally and the error of this approximation can be put
under full control. Thus, the regularization of the numerically ill-posed unfolding problem is
achieved, in case of the proposed approach, solely by using an iterative approximation and
choosing an optimal iteration stop order taking into account the convergent terms (bias error)
and the divergent terms (statistical and systematic errors).

4. Examples

In this section we give two examples to demonstrate our method. In the first example, we take
a Cauchy distribution, and convolve it with a Gaussian distribution with Monte Carlo method.
The folded pdf is determined by histograming the sum of the Cauchy and Gaussian distribution
random numbers, i.e. the measured pdf shall admit Poissonian statistical errors. In this example,
a relatively modest statistics of 5000 entries was taken to be able to judge the method in the
low statistics limit. The results is shown in Figure 4. It is seen that the original Cauchy pdf is
restored, modulo the fluctuations arising from the propagated statistical errors – these are seen
as “shoulders” of the unfolded pdf, the amplitude of which decrease with increased statistics.
The iteration was stopped when the integral of the statistical error term reached about 5% level.

In the second Monte Carlo example, we generate the energy distribution of transversely
emitted hadrons in 7GeV p+p collisions [14], and we assume that this particle spectrum was
measured by the CMS-HCAL calorimeter [15]. The unfolded spectrum, along with the true and
measured distribution is shown in Figure 5.

5. Concluding remarks

We proposed a linear iterative spectrum unfolding method for application in data analysis.
Convergence to the true unfolded pdf is proved under a quite general condition [11] in absence
of measurement errors, and error propagation formulae are derived for bias error, statistical
error, and systematic error in the presence of measurement errors. The method is demonstrated
on physical examples. A numerical library in C is provided with the implementation of the
method [13]. The algorithm could be included in the ROOUnfold package [16] in the future.

8 E.g. one can take the sum of the three error terms, and stop the iteration when it reaches a minimum.
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Figure 4. (Color online) Test example with unfolding a Cauchy distribution convolved with
a Gaussian distribution. Iteration was stopped when the integral of the statistical error term
reached about 5%.
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Figure 5. (Color online) A physical example with unfolding energy distribution of charged
hadrons measured with hadronic calorimeter. Iteration was stopped when the integral of the
statistical error term reached about 2.3%.
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