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Abstract. Adaptive Metropolis (AM) is a powerful recent algorithmic tool in numerical
Bayesian data analysis. AM builds on a well-known Markov Chain Monte Carlo algorithm but
optimizes the rate of convergence to the target distribution by automatically tuning the design
parameters of the algorithm on the fly. Label switching is a major problem in inference on
mixture models because of the invariance to symmetries. The simplest (non-adaptive) solution is
to modify the prior in order to make it select a single permutation of the variables, introducing
an identifiability constraint. This solution is known to cause artificial biases by not respecting the
topology of the posterior. In this paper we describe an online relabeling procedure which can
be incorporated into the AM algorithm. We give elements of convergence of the algorithm and
identify the link between its modified target measure and the original posterior distribution of
interest. We illustrate the algorithm on a synthetic mixture model inspired by the muonic water
Cherenkov signal of the surface detectors in the Pierre Auger Experiment.

1. Introduction
Inferring properties of individual particles in a mixture signal is a challenging problem. The
goal of this paper is to describe an adaptive Monte-Carlo Markov chain (MCMC) algorithm
that estimates the parameters of individual components from the mixture signal. Our objective
is twofold: we aim at “popularizing” an existing technique [1] that eliminates the parameter-
tuning step from MCMC, and we propose an extension of the algorithm to the case when the
signal exhibits certain symmetries (such as in the case of mixtures). The main idea of the
algorithm is to combine adaptive Metropolis [1] with online relabeling [2] with two goals in
mind: 1) carrying out inference on individual components and 2) accelerating convergence.
More details and further analysis of the algorithm can be found in [3].1

The paper is organized as follows. In section 2 we describe a synthetic model inspired by
the muonic signal in water Cherenkov tanks of the Pierre Auger Experiment [4]. Section 3
contains the formal description of the Adaptive Metropolis with Online Relabeling (AMOR)

1 The precise connection of the two papers is the following. The present paper concentrates on a concrete
application (it describes the model and provides quantitative results), whereas [3] uses the physics example
as an illustration and concentrates on the theoretical analysis of the algorithm (with a proof sketch available
as supplementary material). The two papers are written to two almost mutually exclusive communities. The
theoretical analysis of the algorithm is of little interest in the physics community whereas the concrete physics
model we use in analyzing the Auger signal would draw equally little interest in the statistics community.



algorithm. We validate the algorithm on experiments conducted on synthetic data in section 4,
and conclude the paper in section 5.

2. A motivating example
When a muon crosses a water tank, it generates Cherenkov photons and photons coming from
other processes (e.g., delta rays) along its track at a rate depending on its energy. Some of these
photons are captured by photomultipliers. The resulting photoelectrons (PEs) then generate
analog signals that are discretized by an analog-to-digital converter.

In this section, we model the integer photoelectron (PE) count vector n = (n1, . . . , nM) ∈
NM in the M bins of the signal, which means that we omit the model of the PMT electronics.
Formally, ni is the number of PEs in the i-th bin

[ti−1, ti) , [t0 + (i− 1)t∆, t0 + it∆), (1)

where t0 is the absolute starting time of the signal, and t∆ = 25 ns is the signal resolution
(size of one bin). The goal is to parametrize the likelihood P(n | tµ, Aµ) and the priors P(Aµ)
and P(tµ), where tµ is the arrival time of the muon and Aµ is the integrated signal amplitude.
Aµ is itself defined by Aµ = Lµνφµ, where Lµ is the tracklength of the muon, ν is the mean
number of PEs generated by a muon with kinetic energy of 1 GeV on a tracklength of 1 m,
and φµ is the ratio between the number of photons produced by the muon and the expected
number of photons generated by a muon with kinetic energy of 1 GeV. In this paper we use
the dimensions of the Auger tank (R = 1.8 m, h = 1.2 m), and we choose to model signals
of muons that arrive at θ = 45◦. Furthermore, we use an energy spectrum measured for
atmospheric muons [5] and assume that a muon with kinetic energy of 1 GeV generates, on
average, ν = 228 PEs per 1 m of tracklength. Putting it all together numerically, the distribution
P(Aµ) of the total number of PEs deposited by a muon is depicted by figure 1(a).

To model the time response of a muon, we assume that the photon generation is uniform
in a window of width td = 10 ns. The decay phase is modeled by an exponential distribution
with parameter τ = 60 ns. The distribution of PEs in time can be modeled by a convolution
of the generative process and the decay process. In our case the convolution can be solved
analytically to obtain the time response distribution

Pτ,td
(t) =

1
td
·


0 if t < 0,
1− exp(−t/τ) if 0 ≤ t < td,
exp

(
− (t− td)/τ

)
− exp(−t/τ) if td ≤ t.

(2)

depicted by figure 1(b). The time of arrival distribution P(tµ) of the muons in a tank depends
on the energy and the geometry of the shower, on the distance of the tank from the shower core,
and on other external parameters. In this paper we will use an inverse Gamma distribution,
with parameters dependent on several factors (distance of the tank from the shower axis, zeinth
angle and energy of the shower). An example is shown in figure 1(c) with parameters 2.5 and
350. All distributions and parameter values were picked to realistically model the Auger water
detector signal in certain regimes.

Given the arrival time tµ of a muon and the associated total number of PEs Aµ, the PE count
in the ith bin is a Poisson variate with parameter

n̄i(Aµ, tµ) = Aµ

∫ ti

ti−1

pτ,td(t− tµ)dt. (3)
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Figure 1. The generative model of the muonic signal. (a) The distribution P(Aµ) of the muonic
signal amplitude, used as a prior in the inference. (b) The muonic time response model pτ,td(t).
(c) An example signal. The green curve is the time-of-arrival distribution P(tµ), used as a prior
in the inference. The blue curve is the “ideal” response ∑N

j=1 Aµ j pτ,td(t− tµ j) of N = 4 muons
drawn randomly from tµ ∼ p(tµ) and Aµ ∼ P(Aµ), and the red histogram is the signal (PE
count vector) n.

Given N muons with signal amplitudes Aµ = (Aµ1, . . . , AµN) and arrival times tµ =
(tµ1, . . . , tµN), the binwise signal expectation is

n̄i(Aµ, tµ) =
N

∑
j=1

n̄i(Aµ j, tµ j), (4)

and so our model is fully specified by the likelihood

P(n̄ | Aµ, tµ) =
M

∏
i=1

Poin̄i(Aµ,tµ)(ni) (5)

and the prior

P(Aµ, tµ) =
N

∏
j=1
P(Aµ,j)P(tµ,j), (6)



where all bins and muons are assumed independent. Figure 1(c) depicts an example drawn
from the model.

3. An adaptive MCMC algorithm with online relabeling
3.1. The symmetric random walk Metropolis algorithm
The goal of MCMC algorithms in the Bayesian context is to sample from the posterior
distribution

π(X) , π(Aµ, tµ) ∝ P(n̄ | Aµ, tµ)P(Aµ, tµ). (7)

The posterior π(X) = π(Aµ, tµ), whose normalization constant is unknown, can be explored by
running a Markov chain Xt = (Aµ, tµ)t with stationary distribution π. In this context, π is also
said to be the target distribution of the MCMC chain. The symmetric random walk Metropolis
algorithm (SRWM [6], corresponding to the blue steps in figure 3) is one of the most popular
techniques for simulating such a chain (Xt). In SRWM the user has to provide a symmetric
proposal kernel that will be used to propose a new sample X̃ given the previous sample Xt−1.
This new sample is then accepted with probability min(1, π(X̃)/π(Xt−1)). When the posterior
is a distribution over a continuous space X = Rd (with d = 2N in our case), the most common
proposal kernel is a multivariate Gaussian N

(
· |Xt−1, Σ

)
.

The goal of adaptive Metropolis (AM) (corresponding to the blue and green steps in
figure 3) is to automatically calibrate the design parameter Σ of SRWM. When the target
π(x) is multivariate Gaussian with covariance Σπ, the optimal choice of Σ is of the order of
(2.38)2Σπ/d [7, 8]. In practice, Σπ is unknown thus motivating the use of an estimate of the
covariance of the posterior based on samples (X1, . . . , Xt−1) generated so far. From a theoretical
point of view, the conditional distribution of Xt given the past then depends on the whole past,
rendering the analysis of AM more challenging. The convergence of AM has been recently
addressed under quite general conditions (see, e.g., [9, 10] and references therein).

3.2. The challenge of permutation invariance
The optimal choice for Σ is appropriate only when the target distribution is strongly
unimodal [8]. In our case both the signal likelihood p(n̄ | Aµ, tµ) and the prior P(Aµ, tµ)
are invariant under any permutation of the muons which means that the posterior (7) has,
in the general case, N! modes. More precisely, let us assume that the number of muons
is fixed to N = 3 and drop the µ index for the sake of simplicity, then any parameter
vector X = (A1, A2, A3, t1, t2, t3)ᵀ has the same posterior value as the relabeled vector PX =
(A2, A3, A1, t2, t3, t1)ᵀ, where

P =


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

 . (8)

Actually, any other permutation P ∈ P of the 3 muons would give the same posterior value.
Throughout this paper, P will denote the set of all block permutation matrices such as the
one shown in (8). The described permutation invariance implies a risk for the MCMC chain
to exhibit label switching, making componentwise averages meaningless. Figures 2(a)-2(b)
illustrate the challenges when running vanilla AM on the example presented in figure 2(d). The
red variable gets stuck in one of the mixture components, whereas the blue, green, and brown
variables visit all the three remaining components. Marginal estimates computed for the blue,



green, and brown variables are then mostly identical as seen on figure 2(b). In addition, the
shaded ellipses, depicting the marginal posterior covariances of the two parameters Aµ and tµ

of each muon, indicate that the resulting empirical covariance estimate is very broad, resulting
in poor efficiency of the adaptive algorithm.
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Figure 2. The results of AM (top row) and AMOR (bottom row) algorithms on the signal
example of figure 1(c). The right panels show the parameters of the four muons. Black dots:
the x-coordinates are the time-of-arrival parameters tµ, and the y-coordinates are proportional
to the amplitudes Aµ (more precisely, A′µ = Aµt∆(1− etd/τ)/td is the size of the “muon peak”).
Colored ellipses are exp(1/2)-level sets of Gaussian distributions: the means are the Bayesian
estimates of (tµ, A′µ) for each muon, and the covariance is the marginal posterior covariance
of each (tµ, A′µ) couple. The left panels show the four chains of the time-of-arrival parameters
tµ (light colors), the running means (dark colors), and the mean of the running means (black
curve). The AM algorithm shows heavy label switching among the three rightmost muons
whereas the AMOR algorithm separates the muons nicely.

Several approaches have been proposed to deal with the label switching problem. The first
solution consists in modifying the prior in order to make it select a single permutation of the
variables, introducing an identifiability constraint [11]. This solution is known to cause artificial
biases by not respecting the topology of the posterior [12]. An effort has then been made to
adapt to the estimated posterior surface through the design of relabeling algorithms [13, 12]
that process the MCMC sample after the completion of the simulation run. These techniques
look for a permutation Pt of each individual sample point Xt so as to minimize a posterior-
based criterion depending on the whole chain history. [2] proposed an online version of the
relabeling procedure in which the simulation of each Xt is followed by a permutation Pt of its



components. The permutation Pt is chosen to minimize a user-defined criterion that depends
only on the past history of the chain up to time t. The major advantage of this online approach
is that it is compatible with our objective of solving label switching “on the fly” in order to
optimize AM for permutation-invariant models.

3.3. The AMOR algorithm
To prevent AM from label-switching, we go one step further and introduce online adaptive
relabeling, the red steps in figure 3, resulting in the adaptive Metropolis with online relabeling
algorithm (AMOR). The key step is the selection, after each proposal X̃ ∼ N (.|Xt−1, Σt−1)),
of a permutation (relabeling) of the proposed vector by minimizing a quadratic cost function
Lµt−1,Σt−1(x) over all permutations of the proposed vector, where L is defined by

Lµ,Σ(x) = (x− µ)ᵀΣ−1(x− µ). (9)

This step forces the posterior sample to look as unimodal as possible. A side effect is
the modification of the acceptance ratio (line 7 of the algorithm in figure 3), which now
includes sums over P. Computing this correction factor for all the permutations in P can be
prohibitively slow if |P| is large. In practice, in this case we can use an approximate term
which sums over all single inversions, i.e. permutations of only two components/muons,
which decreases the computational cost from O

(
|P|!

)
to O

(
|P|2

)
. Although this modification

does not change the practical performance of the algorithm, the price we pay is the lack of
theoretical convergence guarantee.

To illustrate the algorithm, we ran AMOR on the same example we used for AM. The
mode selected by AMOR (figure 2(c)) corresponds roughly to ordering the arrival times (i.e.,
multiplying the target π by the indicator of the set {tµ1 < tµ2 < tµ3 < tµ4}), although AMOR
does allow the eventual mixing of neighboring components which is important to avoid the
well-known bias of the ordering-based relabeling.

AMOR, similarly to identifiability constraints, aims at approximately selecting one of the
many repeated modes of π. However, AMOR has the advantage of 1) selecting its mode
automatically, avoiding the need for human intervention and possible bad choices of the
constraint, and 2) providing good conditions to the AM algorithm since the sample looks
as Gaussian as possible among its relabelings. The double adaptivity of AMOR, both in
its proposal and in its selection mechanisms (and hence in its target π), makes its analysis
particularly challenging. The convergence proof of AMOR is out of the scope of this paper and
has been recently addressed in [3].

4. Experimental validation of AMOR
To validate AMOR and to illustrate the pitfalls of using AM without removing the permutation
invariance of π, we ran both algorithms on 1200 tank signals with 20 bins and N = 4
muons each, simulated from the model presented in section 2. To create difficult and realistic
situations, we set the arrival time distribution to be inverse Gamma with parameters 2 and
100. This had the effect of reducing the variance of the arrival time distribution, thus making
simulations exhibit a reasonable number of overlapping muons. Examples of such simulated
signals are depicted in figures 4(a), 4(b) and 4(c).

To quantify the performance after T iterations, we first selected the permutation of the
running posterior mean components (t̂(T)

µi )i=1,2,3,4 which minimized the sum of the `2 errors
on the four estimates of the times of arrival tµi, i = 1, 2, 3, 4, and we considered the sum of
squared errors taken at this best permutation τ of the posterior mean to compute an error per



AMOR
(
π(x), X0, T, µ0, Σ0, c

)
1 S ← ∅
2 for t← 1 to T
3 Σ← cΣt−1 . scaled adaptive covariance

4 X̃ ∼ N
(
· |Xt−1, Σ

)
. proposal

5 P̃ ∼ arg min
P∈P

L(µt−1,Σt−1)
(

PX̃
)

. pick an optimal permutation

6 X̃ ← P̃X̃ . permute

7 if
π(X)∑P∈PN

(
PXt−1|X, Σ

)
π(Xt−1)∑P∈PN

(
PX|Xt−1, Σ

)> U [0, 1] then

8 Xt ← X . accept
9 else

10 Xt ← Xt−1 . reject
11 S ← S ∪ {Xt} . update posterior sample

12 µt ← µt−1 +
1
t
(
Xt − µt−1

)
. update running mean and covariance

13 Σt ← Σt−1 +
1
t

((Xt − µt) (Xt − µt)
ᵀ − Σt−1)

14 return S

Figure 3. The pseudocode of the AMOR algorithm. The steps of the classical SRWM algorithm
are in blue, the AM algorithm adds the green steps, and the new online relabeling steps are in
red. Notice the adaptation of both the proposal (line 4) and the selection mechanism through
the dependence of L(µ,Σ) on (µ, Σ). Note that for practical reasons, a small εId is often added
to the covariance matrix in line 3, but [14] recently confirmed that core AM does not lead to
degenerate covariances. Note also that line 5 is usually a simple assignment of the optimal
permutation. In case of ties, we draw uniformly from the finite set of optimal permutations.

muon:

ST =
1
4

(
arg min

τ∈S4

4

∑
i=1

(
t̂(T)
µτ(i) − tµi

)2
)1/2

. (10)

Figure 4(d) shows a scatterplot of ST after T = 3× 106 iterations. On each signal, both AM
and AMOR started with the same initial point, that is all points in figure 4(d) were lying on the
diagonal. AMOR clearly outperformed AM on cases where label switching appears, leading to
an estimate of the average error per muon of 17.0± 0.1ns versus 18.3± 0.1ns on these difficult
cases.

The computational complexity of AMOR depends on several factors. The most costly step
is the evaluation of the posterior ratio (line 7 in figure 3). In mixture models the evaluation
of the posterior ratio is proportional to the number of components. Since it has to be done in
every iteration, the number of iterations is also a linear factor. The execution time of our current
unoptimized Mathematica implementation with a fixed number of iterations T = 32000 was
in the order of minutes to tens of minutes, depending on these factors. An optimized C++
implementation would reduce this time by one or two orders of magnitudes.
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Figure 4. (a),(b),(c) Examples of generated signals, with 20 bins and 4 muons each. Arrival time
distribution is IG(2, 100). (d) SAM

3M vs. SAMOR
3M results (see text).

5. Conclusion
We presented AMOR, a generic adaptive MCMC algorithm designed to tackle problems with
permutation invariance, such as inferring the parameters of the muons of an Auger tank signal,
and we demonstrated its capacities on simulated signals. The main advantages of AMOR are
that 1) it selects a constraint on the posterior in a fully automatic fashion, avoiding the need
for external expert knowledge, and 2) it allows for adaptive proposals which are known to be
efficient when the target is unimodal [1]. The first advantage is a key point when it comes to
models as complex as the generative model of a cosmic ray shower in Auger, since inferring
the parameters of the muons is only meant to be a basic building block of a much larger scale
inference algorithm.
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