
Evaluation of likelihood functions on CPU and GPU

devices

Sverre Jarp, Alfio Lazzaro, Julien Leduc, Andrzej Nowak and Yngve

Sneen Lindal

CERN openlab, Geneva, Switzerland

E-mail: sverre.jarp@cern.ch, alfio.lazzaro@cern.ch, julien.leduc@cern.ch,

andrzej.nowak@cern.ch, yngve.sneen.lindal@cern.ch

Abstract. We describe parallel implementations of an algorithm used to evaluate the
likelihood function used in data analysis. The implementations run, respectively, on CPU
and GPU, and both devices cooperatively (hybrid). CPU and GPU implementations are based
on OpenMP and OpenCL, respectively. The hybrid implementation allows the application to
run also on multi-GPU systems (not necessarily of the same type). The hybrid case uses a
scheduler so that the workload needed for the evaluation of function is split and balanced in
corresponding sub-workloads to be executed in parallel on each device, i. e. CPU-GPU or
multi-CPUs. We present the results of the scalability when running on CPU. Then we show the
comparison of the performance of the GPU implementation on different hardware systems from
different vendors, and the performance when running in the hybrid case. The tests are based on
likelihood functions from real data analysis carried out in the high energy physics community.

1. Introduction

The evaluation of a likelihood function is required in several data analysis techniques, such as
the maximum likelihood fitting procedure [1]. These techniques are largely used in high energy
physics (HEP) experiments to analyze the data they collect. The data samples are a collection of
N independent events, an event being the measurement of a set of O observables x̂ = (x1, . . . , xO)
(energies, masses, spatial and angular variables...) recorded in a brief span of time by physics
detectors. The events can be classified in S different species. Each observable xj is distributed
for the given species s with a probability distribution function (PDF) Pj

s (x
j; θ̂js), where θ̂js are

parameters of the PDF that can be related to the prediction obtained from physics models. If
the observables are uncorrelated, then the total PDF for the species s is expressed by

Ps(x̂; θ̂s) =
O
∏

j=1

P
j
s (x

j ; θ̂js). (1)

The PDFs are normalized over their observables, as function of their parameters, which implies
an analytical or numerical evaluation of their integral. The extended likelihood function is

L =
e−
∑

S

s=1
ns

N !

N
∏

i=1

S
∑

s=1

nsPs(x̂i; θ̂s), (2)



where ns are the number of events belonging to each species. It is usual to evaluate the equivalent
function − ln(L), the negative log-likelihood (NLL)1:

NLL =
S
∑

s=1

ns −

N
∑

i=1

(

ln
S
∑

s=1

nsPs(x̂i; θ̂s)

)

, (3)

that is a sum of logarithms. The terms of the sum can graphically be visualized as a tree, where
the leaves are the PDFs Pj

s (x
j ; θ̂js) (basic PDFs), which are then linked to the corresponding

product PDFs Ps(x̂; θ̂s), and finally the root that is
∑S

s=1 nsPs(x̂i; θ̂s) (sum PDF). Product and
sum PDFs are denoted as composite PDFs. Therefore, the root has S child nodes, each with O

children, which means that in the tree there are S × (O + 1) + 1 nodes in total. The evaluation
of the term in the sum of logarithms consists in traversing the entire tree, first evaluating the
leaves up to the root. The time spent for this evaluation depends on the number of events
and the complexity of the PDFs. Furthermore, the entire evaluation is performed several times
during the data analysis for different sets of the PDF parameters. Hence, it becomes important
to speed-up the evaluation to have fast data analyses.

The common software used in HEP community for the evaluation of the NLL is RooFit [2],
which is part of the general data analysis framework ROOT [3]. Currently RooFit implements an
algorithm for the NLL evaluation that cannot take full advantage of data vectorization and other
code optimizations (like function inlining). A redesign of the algorithm and the corresponding
implementation, with vectorization and several code optimizations, was described in Refs. [4]
and [5]. This algorithm was also parallelized for CPU and GPU execution, based on OpenMP
and CUDA, respectively. An improved version of the OpenMP implementation and a new
implementation for GPU based on OpenCL are described in Ref. [6]. In the same reference, there
is a description of a new implementation that allows the evaluations of the likelihood function
to run cooperatively on a CPU and GPU belonging to the same computational node (hybrid
evaluation). In this paper, the OpenMP and OpenCL implementations are briefly reported,
while an improved hybrid implementation, which allows running on multi-GPU systems (not
necessarily of the same type) is introduced.

It is worthwhile to point out from the beginning that the implementations are specifically
optimized for running on commodity systems, i.e. systems than can be considered, in terms
of cost and power consumption, easily accessible to general data analysts (e.g. single socket
desktop with a GPU whose main target is computer gaming). Data analysts can fully exploit
their systems when performing the hybrid evaluation.

This paper is organized as follows: Section 2 describes the OpenMP and OpenCL
implementations and introduces the the new hybrid solution; Section 3 reports the results
obtained from tests done with a benchmark analysis on a testing system with NVIDIA and
ATI GPUs; conclusion are given in Section 4.

2. Parallel Implementations

This section describes the implementations for the evaluation on CPU, GPU, and the hybrid
configuration. The code is implemented in C++ and all floating point operations are performed
in double precision. Other details on these implementations can be found in Ref. [6].

2.1. OpenMP CPU Implementation

The parallelization on the CPU is based on OpenMP. Each type of PDF is implemented by
a specific class. All inherit from a common interface that gives the public virtual method
getVal and the protected pure virtual method evaluate. The former method computes the

1 The N ! term in the expression is omitted, since it does not depend on the parameters.



normalization integral of the PDFs (in case of basic PDFs) and then it calls the latter method,
which is overloaded inside each PDF class and it performs a loop for the evaluation of the
function values. In total there are S × (O + 1) + 1 loops that are implemented as for loops.
There is only one parallel region for each evaluation, and this region starts at the root of the
tree. This is implemented via a #pragma omp parallel directive. Therefore each loop executes
a given subset of the N iterations. They are statically partitioned, i.e. each thread executes a
fixed number of iterations. The partitioning is implemented in a way so that one thread can
have at most one iteration of difference with respect to the other threads, to ensure an equal
load-balancing. Eventually, the algorithm computes the logarithm of the final results, summing
them up with a loop (reduction), which is also parallelized. To ensure the reproducibility of the
results a specific algorithm for the reduction has been implemented. It preserves the order of
the operations for a given number of threads and it reduces the rounding problem due to non-
associative floating point arithmetic, using the double-double compensation algorithm 2Sum [7].

Each thread executes the entire evaluation from the root to the leaves within its own
partition only and it accesses consecutive elements of the arrays of observables and results,
allowing coalescing of memory accesses and data vectorization of the loops. These arrays are
shared among the threads so that there is a negligible increase in the memory footprint of the
application when running it in parallel. This implementation can lead to consequences that may
be problematic in the case of a complex C++ code like RooFit. Indeed, the parallel region covers
a larger portion of the execution, so it is crucial not to modify member variables of the object
the method is running on, or global variables, without carefully assuring that race conditions
are avoided.

Several arrays of temporary results and O arrays of observables have to be managed for each
evaluation, each array composed by N double precision values. The amount of data to manage
becomes significant in the case of complex models and large data samples, and it becomes crucial
to have optimal treatment of the data inside the cache memories. Tests have proved that there is
a significant penalty to the scalability when running with a high number of threads in a system
where the largest cache memory is shared among the cores. Some different optimizations have
been considered in order to reduce the load on memory. The composite PDFs, which have to
combine arrays of results with just a simple operation, can send their results array “down” to
the children, which then do their own evaluation and the corresponding combination directly on
the array of value of the parent (results propagation). The main benefit of this change is that
each basic PDF does not have to store its own results. Another optimization consists in splitting
the data domain into blocks so that the entire procedure of evaluation is done one by one of
them (block splitting). This optimization directly targets cache misses, since it increase locality
and thereby cache efficiency. With these optimizations the number of total loops is S × (O+1)
times the number of blocks and the number of arrays of results to S + 1.

2.2. OpenCL GPU Implementation

In the OpenCL implementation the PDF loops are offloaded to be executed on a GPU. Each loop
is thereby replaced by a corresponding OpenCL kernel which runs the N iterations using GPU
threads. Also this implementation takes advantage of the results propagation as explained in
Section 2.1 for the OpenMP implementation. The block splitting is not considered because
it does not fit with the way a GPU does computations. The results propagation for the
composite PDFs is not feasible for OpenCL (it requires more coding with respect to the OpenMP
implementation, e.g. because templates are not supported). There is an independent kernel to
launch for each PDF, therefore S× (O+1) kernels, and a corresponding equal number of arrays
of results to manage. The reduction is performed in parallel using a tree-based algorithm. It
is deterministic and takes into account the non-associativity problem described in the OpenMP
implementation.



The key reason for using OpenCL is the portability between vendors, which is particularly
interesting for users using commodity systems. The implementation is fully performance-
portable between NVIDIA and AMD GPUs. Tests have shown marginal improvements (less
than 5%) when doing specific optimizations, e.g. using native vector types, which lead to
different implementations for each device with respect to a common implementation.

The arrays of the observables are copied from the host to the GPU global memory using
synchronous functions. These arrays are read-only during the entire execution of the application,
so only one copy at the beginning is needed. Then they are used for all NLL evaluations. For
each evaluation, the CPU traverses the NLL tree and it launches the corresponding kernels to
be executed on the GPU. The arrays of results for each PDF can be kept resident in the GPU
global memory. Eventually, the reduction is done on the final array of results and the value of
the sum is copied back to the host memory for the finalization of the NLL value. The kernels are
asynchronously executed, i.e. the evaluation of the tree is non-blocking and the kernels are just
queued for execution on the GPU. The possibility of interleaving CPU and GPU computations
reduces the impact of the operations that are not in loops, i.e. only executed by CPU, like the
integral calculation for the normalization.

A very general procedure based on a heuristic approach has been used to decide the size of the
workgroups. The rule is that if a kernel contains a transcendental function, the workgroup size
is set to a “low” number. If the kernel does not contain transcendentals, but rather only basic
arithmetics, the workgroup size is set to a “slightly higher” number. Tests have shown that 64
and 128, respectively, provided good results, with occupancy numbers ranging from 0.33 to 0.67
depending on the kernel. A comparison between using these numbers and the OpenCL default
numbers gives about 14% improvement in performance. The number of blocks per kernel is then
computed from the number of events divided by the number of threads per block, rounded to
the greatest integer number.

2.3. Hybrid Implementation

The two implementations described in the previous sections make it possible to fully use the
CPU and GPU computational devices independently. In the case of the GPU implementation,
the CPU runs only a single thread, so a multicore CPU would be underutilized. Therefore, it is
interesting to explore the possibility to fully load the CPU in an implementation-pleasant way.
Another interesting possibility is to cooperatively use GPUs in a multi-GPU system. The hybrid
solution described here allows to achieve these goals, running simultaneously the OpenMP and
OpenCL implementations described in the previous sections.

In general a compute device is defined as some device capable of computation inside one
physical computer. In the context of this work, it can be a CPU or a GPU. The physical computer
has a single CPU and several possible GPUs. It then becomes important to have correct load
balancing of the workload between such devices. Load balancing is a very fundamental and old
problem, and much research has been done on it (Refs. [8, 9, 10] describe some examples of
load balancing scenarios within computer science). The hybrid implementation described in this
work uses a refining static load balancing for the evaluation of the NLL. The whole evaluation
can be regarded as data-parallel, and therefore the whole domain is split into partitions so that
each compute device is responsible for computing one and only one partition. A central concept
is the importance of result determinism. It is crucial that each compute device has a fixed
range before actual result computation starts, since different ranges in the same run would lead
to different results when the final reduction is done. This means that the balancing must be
an initial phase before a real evaluation is performed. The strategy used for implementing the
heterogeneous data-parallel load-balancer in this work consists of:

• Starting an initial balancing phase by assigning to each compute device a range of length
approximately N/K, where N is the total number of events, and K is the number of



compute devices. This will lead to timing value tk for each computational device, with
k = 1, . . . K. The distribution of timing values will most probably be highly sub-optimal if
the computational capabilities of the devices differ.

• Iterating and adjusting the partitioning based on these timings. Hopefully, this will converge
within some time threshold, assuring a nearly optimal execution, i.e. a work partitioning
that minimizes the difference between all timing values within some threshold.

Therefore, the determination of the optimal balancing is performed using a priori self-adjusting
static load-balancing, so that the computation domain is first decomposed in such a way that
each device will spent almost same amount of time to execute its own sub-workload. Then the
decomposition is kept fixed (static) during all NLL evaluations. The downside of this strategy
is that the entire subsequent evaluation will be based on this phase. If conditions in the system
change, e.g. false timings during the initial phase or external load on the hardware during
evaluation, the balancing can be sub-optimal.

The actual method used for dividing work between compute devices based on their
respective execution times was originally described in [11] and was also used with seemingly
good results in [12]. Let N b

k denote the partition for compute device k (i.e. the number
of events for that device) for a given balancing cycle b, so that the events are split in
[

1, N b
1

]

,
[

1 +N b
1 ,
∑

2
k=1N

b
k

]

, . . .
[

1 +
∑K−1

k=1
N b

k, N
]

group for each device, respectively. Then

each device evaluates its partition by mean of the specific implementation, i.e. OpenMP or
OpenCL, spending the execution time tbk. The relative power for each device (i.e. its relative
compute capability) is defined by:

RP b
k =

N b
k

tbk
(4)

and the total power as

SRP b =
K
∑

k=0

RP b
k . (5)

Now each new partition can be computed by

N b+1

k = N ∗
RP b

k

SRP b
. (6)

The procedures ends when the maximum and the minimum of the distributions of tbk differ within
some threshold. Each implementation runs the entire NLL tree evaluation. The measurement
of the execution times of both CPU and GPU implementations is done using the omp get wtime

OpenMP function. It is possible to consider averages from several NLL evaluations to reduce
the fluctuations of these timings (the number of evaluation can be set by the users depending
on the complexity of their NLL). The threshold value is increased when the condition is not
satisfied after a given number of cycles of the load-balancer because of large fluctuations with
respect to a small threshold. In any case, the minimum value of the threshold can be related to
the time to execute a minimum number of events (granularity). Tests presented in this paper
have shown that the load-balancer is able to reach convergence after only 3 cycles.

Once the best partition is found, the hybrid implementation consists in three different steps:

(i) Decomposition of the N iterations of the loops in groups of iterations Nbest
k for each device

k.

(ii) Each device runs the corresponding implementation for the entire NLL tree evaluation,
considering its iterations. Then it runs the reduction.

(iii) The result of the reductions from each device are collected and summed together to finalize
the NLL evaluation on the CPU.



In this strategy, the part that needs to be implemented is represented by the first step. The
second step executes the OpenMP and OpenCL implementations already described on different
ranges on the observables, and the last step is trivial.

The hybrid implementation is itself based on OpenMP. Essentially, the OpenMP
implementation starts P + K − 1 threads, where P is the number of threads used for the
NLL evaluation, while the other threads are used to run the GPU implementation for each GPU
devices (K − 1 GPUs). This is possible since in the OpenMP implementation starts a single
OpenMP parallel region at the root of the NLL tree, so that it is possible to branch between the
two implementations at the beginning of the evaluation. Then the OpenMP standard guarantees
an implicit synchronization at the end of the parallel region. It is important to remember that
the OpenCL kernel calls are non-blocking and ideally consume minimal CPU time, i.e. the
evaluation of the tree on the CPU imposes a minimal overhead. If this holds, then users can
decide to run P +K − 1 threads on a CPU with P cores.

3. Tests

The following tests a statistical model based on the BABAR analysis for the branching fraction
measurement of the B meson to η′K decay [13]. There are 3 observables and 5 species. In total
there are 21 PDFs: 7 Gaussians, 5 polynomials, 3 Argus functions, combined by 5 PDFs for
multiplication and one for addition. All PDFs have an analytical integral. The number of events
considered ranges between 10k and 1M. The model is implemented by a simplified version of the
RooFit package. It is an easy-to-compile implementation which preserves the same programming
interface of RooFit but without all the physics-related details. Tests are done considering 1000
NLL evaluations so that it is possible to compare the results for different number of events. The
entire tests are repeated 5 times to achieve an accurate timing result.

The CPU system is an Intel Core i7 965 Nehalem running at 3.2 GHz, with 2GB DDR3 RAM.
It is a quad-core CPU and supports SMT, which means that it has the ability to physically
execute 8 threads simultaneously. Two GPUs are used: NVIDIA GeForce GTX470 and AMD
Radeon HD5870. The code is compiled to run on the CPU using Intel Composer XE 2011 (icpc
v12).

In the case of the OpenMP CPU implementation the speed-up is defined as the ratio between
the execution times spent by the application running with a single thread and with a certain
number of threads in parallel. The fraction of the execution time spent in code that can be
executed in parallel is 96%. The results are: 1.8x with 2 threads and 3.6x with 4 threads. They
are consistent with the theoretical speed-up values obtained by the Amdahl’s law, i.e. 1.9x for 2
threads and 3.6x for 4 threads. Using the SMT threads, the overall speed-up becomes 4.7x with
8 threads, which means a benefit of 30% due to SMT. All results do not depend on the number
of events used in the test.

In the case of the OpenCL GPU and the hybrid implementations the speed-up results are
obtained from the ratio of the execution time of the exclusive OpenMP CPU implementation
with 4 threads and the execution time of the configurations with GPUs. The reason of this
choice is to see how fast we can go using the GPUs with respect to the parallel execution on
the CPU only. The results for the OpenCL GPU implementation are shown in figure 1. For
this case only, tests are also executed on a NVIDIA Tesla C2050. This implementation is not
beneficial for a low number of events with respect to the OpenMP CPU implementation with 4
threads (speed-up < 1.0x), while it reaches a speed-up between 3.0x–3.6x for an high number
of events. This is a direct consequence of the need to copy the final value over the PCI-Express
bus. An interesting result is that neither the HD5870 nor the Tesla C2050 give any higher
speedups than the GTX470, although theoretically they are almost 4x faster than the GTX470
when performing double-precision arithmetic. The reason is that the computation is completely
memory-bound so all the ALUs on the cards are starved waiting for memory reads [14]. Figure 2



Figure 1. Comparison between OpenMP CPU and OpenCL GPU implementations. The
reference is the OpenMP implementation with 4 threads.

shows the results from the hybrid implementation. A general observation is that N must be large
to gain anything since the overhead must be amortized. Balancing between the GTX470 and
the CPU (with 4 threads in the OpenMP implementation) is very beneficial, achieving nearly
perfect balancing for high workloads. In this case the speed-up increases from 3.0x when using
the exclusive OpenCL GPU implementation to 3.8x of the hybrid case (4.0x is the theoretical
maximum). Running with HD5870 and the CPU however leads to an almost negligible gain,
i.e. the speed-up does not increase with respect to the exclusive OpenCL GPU implementation.
This is due to an inefficiency of the AMD GPU driver for the OpenCL execution, which implies
a significant overhead for the its execution on the CPU. The multi-GPUs configuration gives
the best performance, reaching a speed-up of 6.1x, close to the theoretical maximum of 6.8x.

4. Conclusion

Two implementations for the NLL evaluation have been presented based on OpenMP and
OpenCL and run on CPU and GPU, respectively. A novel approach has been presented that
allows the hybrid evaluation for CPU and GPU computational devices including multi-GPUs
systems. One can conclude that the GPU can be used for a sufficient number of events, and this is
suitable since the need for computing power increases with N . Using the hybrid implementation
further improves the performance; the multi-GPUs configuration gives the best performance.
More details on this work can be found in Ref. [14].

Acknowledgments

The authors would like to thank Filippo Spiga of Irish Centre for High-End Computing for
providing us the system with the NVIDIA Tesla card and Felice Pantaleo for his suggestions in
the GPU implementation.



Figure 2. Comparison between OpenMP CPU, OpenCL GPU and the hybrid implementation
(CPU + GPU on the left plot, multi-GPUs on the right plot). The reference is the OpenMP
implementation with 4 threads. The “theoretically perfect” lines are obtained when summing
the performance of the OpenMP and OpenCL implementation alone, i.e. no considering the
overhead from the hybrid implementation.

References
[1] Cowan G 1998 Statistical Data Analysis (Oxford: Clarendon Press)
[2] Verkerke W and Kirkby D 2006 proceedings of PHYSTAT05 (London: Imperial College Press)
[3] Brun R and Rademakers F 1997 Nuclear Instruments and Methods in Physics Research Section A 389(1-2)

81
[4] Jarp S et al. 2011 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops

and PhD Forum pp 1349–1358 (Preprint CERN-IT-2011-010)
[5] Jarp S et al. 2012 Journal of Physics: Conference Series (Preprint CERN-IT-2011-009)
[6] Jarp S et al. 2011 Parallel likelihood function evaluation on heterogeneous many-core systems proceeding of

International Conference on Parallel Computing, Ghent, Belgium (Preprint CERN-IT-2011-012)
[7] He Y and Ding C H Q 2001 The Journal of Supercomputing 18 259–277
[8] Aller B et al. 1997 ACM Trans. Comput. Syst. 15(3) 253–285
[9] Ali R et al. 1995 IEEE Computer Society Press

[10] Ferrer R et al. 2011 Proceedings of the 23rd International conference on Languages and compilers for parallel

computing 215–229
[11] Galindo I et al. 2008 Lecture Notes in Computer Science 5205 64–74
[12] Acosta A et al. 2010 467–476
[13] Aubert B et al. (BABAR Collaboration) 2009 Phys. Rev. D 80 112002
[14] Lindal Y S 2011 Optimizing a high energy physics toolkit on heterogeneous architectures (Preprint

CERN-THESIS-2011-153)


