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Abstract. Multivariate discrimination techniques, such as neural networks, are key
ingredients in modern data analysis and play an important role in high energy physics. They
are usually trained on simulated Monte Carlo (MC) samples to discriminate so called “signal”
from “background” events and are then applied to data to select real events of signal type. We
here address procedures that improve this workflow.

(i)Enhance data / MC agreement by reweighting MC samples on a per event basis.
(ii)Training MVAs on real data using the sPlot technique.

(iii)Constructing MVAs whose discriminator is independent of a certain control variable, i.e.
cuts in this variable will not change the discriminator shape.

1. Introduction
In order to have a well trained MVA which gives a calibrated discriminator, i.e. a discriminator
which is linearly dependent on the signal probability of the given event, it is necessary to have
a training sample which is as similar to data as possible. This requirement can not fully be met
by generated events in most cases. Some of the possible reasons are:

• Cross sections and branching ratios of different processes have yet to be measured

• Hard process simulation is not good enough (e.g. it is only calculated to some finite precision
by theorists)

• Detector simulation is not yet optimal (material budget, dead channels, ...)

• Physics “behaves“ differently than initially expected in the new energy range.

Usually some of these effects, which appear as differences between data and MC, are tried
to be eliminated by introducing scale factors. These scale factors are usually just constants or
functions of some measured variable like pT or η of the leading jet. This can already reduce
differences between data and MC a lot, but the agreement is usually not yet perfect in all variable
distributions and can even make certain distributions worse than they were without weights.
As will be shown in section 2, it is possible to use MVA methods to derive individual per event
weights, which will outweight differences in all input variables simultaneously.

In section 3 the sPlot method will be introduced, which can be used to train on measured
data events only, and not depend on any generated MC samples. The third section 4 will focus
on the issue of biasing the distribution of a control variable through discriminator cuts. This
happens if the discriminator is correlated to the variable in question, which might be the case if



the control variable is able to discriminate signal and background itself. Also in this case using
appropriate weights can solve the issue by outweighting the correlation but still keeping all the
discrimination power which is orthogonal to the control variable.

2. Multivariate reweighting to correct for differences between generated Monte
Carlo and real data events
In physics experiments there are usually differences between the simulated MC events and
measured data. These arise from limited knowledge of the underlying physics processes, detector
mismodeling and other issues.

In order to still be able to use the MC ensemble as a whole qualitatively, weights may be
applied to make certain groups of events more pronounced and make observable distributions
agree better between MC and data.

Instead of using scale factors in bins of certain measured values, we propose to use MVA
methods to derive individual weights per event.

2.1. Task description
The reweighting procedure has to emphasize those events in the MC sample which have a high
probability to be found in data, based on a certain phase space under inspection. This can be
achieved by performing a training in which real data events are used as target/signal events and
MC is fed to the MVA as background events. The MVA will then pick up which MC events can
be separated from data. Optimally, if data/MC agreement was perfect, the MVA would not be
able to learn anything in this training. Everything it learns is due to mismodeling in MC.

In the next step the MVA is applied to MC events and the discriminator output is transformed
into an event weight.

2.2. Derivation of transformation for MVA output to event-weight
If the MVA was trained to discriminate data from MC, the MVA will yield the probability p for
an event to be data when selecting from the whole sample: p = data

data+MC . What we need is the

probability w for the MC event to be data when selecting from the MC sample only w = data
MC . In

the following the derivation for NeuroBayes output NBout is given, which is linearly dependent
on p in the range [-1,1].

p =
NBout + 1

2
=

data

data+MC
⇒ w =

data

MC
=

1 +NBout

1−NBout
(1)

2.3. Illustrative example
For illustration, the above steps have been applied on simulated toy samples. Two MC-samples
with 9 observables were generated from arbitrary analytical distributions. Some correlations
among the observables were introduced in order to have a more realistic example, e.g. var3 and
var6 have a correlation coefficient of 0.2. Two of these observables have different distributions
in the two samples, while the other 7 observables are distributed equally. These distributions
are the black and blue ones in figure 1.

In this example the differences were exaggerated to be visible with the naked eye and to
show the power of this method. As a first step towards individual event weights, a NeuroBayes
training to discriminate between pseudo data and MC has been performed. The discriminator
distribution can be seen in figure 2(a).

Since the two input variables shown in figure 1 have quite different shapes for the two samples,
the NeuroBayes output is able to discriminate the two sample types quite well. The weights w
for the MC events are derived using formula (1). The weight distribution is shown in figure 2(b)
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Figure 1. Distributions for 4 input variables. The MC (blue) was reweighted (red) with the
weights from NeuroBayes to become comparable to the pseudo data.

(a) Distribution of NeuroBayes discriminator for pseudo
data (red) and MC events (black)
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(b) Histogram of event weights for MC events
derived from NeuroBayesExpert output.

Figure 2. Histograms for the MC to pseudo data reweighting.

As can be seen, most events will get weights smaller than 1, while some will get huge weights
of up to 45. This is mainly due to the small overlap for the distributions of var3 and the
big height difference in some regions. Applying the weights to the MC events leads to the
distributions shown in figure 1. The method does not work well if there are no MC events at all
in regions where real data events exist since then the weights diverge. Obviously the reweighted
distribution agrees quite well in those variables which were differing without weights, while those



variables which already matched are still agreeing. This would not necessarily be the case if
simple histogram based weights were applied, since they don’t take correlations into account.

3. Training on data without MC: side band subtractions and the sPlot technique
3.1. Side band subtraction
Another way of getting around the issue with the disagreement between data and MC would be
to directly train on data. However this is usually not possible because one cannot find absolutely
pure samples of signal events. Still in some cases, one can at least define regions in phase space
which are signal enriched and where a signal peak is already visible over some background. This
peak can be used to estimate the yield of signal events and perform a side-band subtracted
training. An overview of the different regions needed to perform such a side-band subtraction
is shown in figure 3.

Figure 3. Mass distribution of Λc candidates. Red is the signal region, while blue and green
are the side-bands. [3]

Three regions are defined and the events are used during the training in the following way:

region amount of events target type weight
red Nsig + Nback signal 1
green Nsig background 1
blue Nback signal -1

Nsig is the estimated yield of signal events in the red region (in the peak above the
background), while Nback is the estimated amount of background events in this region. With
the weight1 and target definitions given above, the MVA will get a training sample which (after
subtraction) consists of an equal amount of signal and background events. One has to make sure

1 A short introduction on how weights are used during a MVA training can be found in Appendix A.



Figure 4. NeuroBayes discriminator distribution for the sideband training. [3]

Figure 5. Mass distribution for Λc candidates after a discriminator cut of 0.5. [3]

that the MVA is not able to learn the dependency of the variable (mass in this case) one uses to
estimate the signal and background yields, e.g. by excluding input variables that can distinguish
between left and right side-band or the method in section 4. In this example mainly variables
which parametrize the identification quality of the Λc decay particles kaons and protons and
their kinematics are used, but not their full momentum or energy since these are too closely
related to the Λc mass.



3.2. The sPlot formalism: advanced side-band subtraction
An advanced version of the side-band subtraction is the sPlot formalism. It exploits the complete
probability densities of signal and background. Also a pure background region is not necessary,
it is enough that the PDFs differ measurably.

A full derivation of the sPlot weights can be found at [4]. They result is:(
ws(x)

wbg(x)

)
=

1

f(x)
·V ·

(
fs(x)

fbg(x)

)
with:

f(x) = Ns · fs(x) +Nbg · fbg(x)

Here the following variable definitions apply:

• ws the sPlot signal weight, wbg the background weight, with ws +wbg = 1. ws and wbg may
be negative or larger than 1.

• fs,bg are the probability density functions of signal and background.

• V covariance matrix of fs and fbg.

What the sPlot formalism will do, is the following. One has to deduce the probability density
function for the two event types signal and background, e.g. using function fits to a mass peak.
Using the given formula above, these pdfs can be transformed into event weights. By applying
the signal/background sPlot weights to data, we will get the pdf of any variable independent
of the one (mass) we used to deduce the pdfs in the first place. In order to actually use these
weights for a MVA training one has to use each event twice2, once as signal with weight ws

and once as background with weight wbg. During the training the MVA will then learn that
there are certain events in the trainings sample which have a high signal weight and a lower
background weight, and reside in a different phase space than the rest of the sample and will
learn their properties to distinguish them.

3.3. Example for the application of the sPlot formalism
An example is taken from the PhD thesis of Claudia Marino [2]. The sPlot formalism was used
there to train NeuroBayes on the Υ(1s) resonance in CDF data. The goal was to reduce the
background under the Υ 1s,2s,3s resonances for further studies. The result can be seen in figure
6. The background could be reduced drastically while barely loosing signal events. Again this
was done by training on real, measured data events and not using any kind of generated events.
Another successful application of this method was the excited charm baryon analysis by the
CDF collaboration [5].

4. Orthogonal discriminator: preventing distribution bias through event selection
In some analyses the final result (e.g. signal yield or certain properties) should be deduced by
fitting a template to a certain control variable distribution. We will refer to this variable as
varX in the following. This variable is chosen such that it will show a clear shape difference
between the distribution of signal and background events. This is essential for the template fit
to converge. Usually the amount of background has to be reduced drastically to have a decent
signal/background ratio, which is done by cutting on several other variables and/or with a cut
on a MVA discriminator. Especially the latter may introduce a bias in the control variable varX
if the MVA learned the dependence of the signal probability on varX. This might even happen

2 For NeuroBayes trainings this is not necessary any more, since it provides a special sPlot training mode. It
will automatically use each event as signal and background event if given the sPlot weight as target and will
account for the real given statistics and the correlation of the two entries of a given event.



Figure 6. Υ resonances before and after cutting on a sPlot trained NeuroBayes network.
Extracted from Phd thesis Claudia Marino figure 5.8

if varX is not one of the input variables because the other variables may be correlated to varX.
In any case what might happen is illustrated in figure 7.
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Figure 7. The left, stacked plot shows the original varX distribution for signal(red) and

background(black). The background distribution is relatively flat and has only a small slope, while

the signal events are more prominent at higher values of varX. Due to the rising of the signal distribution

in varX, a cut on a discriminator which uses varX as one of its inputs, will result in a background

distribution which is shown on the right.

Obviously the background distribution gets tilted by the discriminator cut, which is an issue
in some analysis and we will therefore present a way to prevent this.

4.1. Task description
The task is to find a way to train the MVA such that its discriminator value is independent of
varX and that cuts will equally remove background events from all bins in varX.

The easiest way would be to eliminate those variables which carry information about varX
from the set of input variables. On the one hand this would remove the discriminator’s



dependence on varX but it will probably also remove some discrimination power from the MVA
which is orthogonal to varX and should be saved.

Since the problem mainly arises from the different dependence of the signal and background
on varX, another possible solution is to reweight the training sample such that this dependence
vanishes. For this, the ratio between the desired distribution and the current height of the bin
in each histogram is used as weight for events in this bin. Any distribution would be possible of
which two have been studied here.

• Signal and background are both reweighted to be flat in varX. This is shown in figure 8(a).

• Both distributions are reweighted to the shape of the inclusive distribution, as shown in
figure 8(b). This has the advantage over the flat shape that especially in the low varX region
for the signal distribution the weights are not as large. Large weights should be avoided
during MVA trainings as they will make the internal error calculation more difficult.
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(a) Signal and background
reweighted to be flat in varX
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(b) Signal and background
reweighted such that each distri-
bution has the same shape as the
original inclusive distribution.
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(c) Event reweighted with indi-
vidual weight-network values

Figure 8. Reweighted shapes of varX with the three different weight types for signal(red) and
background(black).

The weight calculation based on the varX histograms for signal and background has several
shortcomings:

• The differences between the signal and background are only taken into account in bins and
not continuously or individually per event.

• Only reweighting based on varX does not take complex correlations between varX and the
other input variables into account. Thus some of the unwanted discriminator dependence
might still be present.

The third approach we have studied is more elaborate. The basic idea is to train a MVA
to discriminate between events which have high or low values of varX. This network will carry
all information about varX which is contained in the input variables. The output of this MVA
can then be translated into a weight for the actual signal/background training, which will be
insensitive to varX. In the following we will give a more detailed explanation on how this MVA
based weights are derived.

4.2. MVA based weight derivation
In order to deduce individual per event weights a more complex approach was developed. Here we
use a chain of NeuroBayesExperts to calculate the weights for the final signal against background



training. In the following we have to distinguish between those NeuroBayes trainings which are
needed for the weight derivation (called weight-network) and the one which does the actual
signal against background discrimination (called discriminator-network).

The first step in developing the weight-network is based on the idea, of letting NeuroBayes
learn the information whether varX is high or low in an event based on the input variables
which will be used in the discriminator-network. So the target definition for the weight-network
training is ”Is varX higher than a certain threshold?“. The steps to get to the definition of what
is target (T) and non-target (!T) during the weight-network training is illustrated in figure 9(a)
and are as follows:

(i) Draft of signal and background in a stacked plot.

(ii) We do not really care of what is signal or background for the time being, but we divide the
whole dataset in the middle of varX (4 in this case).

(iii) Only defining the high values as target and the low values as non-target is not quite
sufficient, because then the weight-network will implicitly already learn what signal and
background look like. Therefore the target and non-target definition is opposite between
signal and background for the weight-network training in one half of the dataset.

Background

Signal

0 8

            

               

0 8

            !T T

               !T

0 8

T

i)

iii)

ii)

(a) Definition of target(T) and non-target (!T)
region for weight-network training

0 8

!T T

T

!T

!T T

T

!T

0 8

!T T

!T
T

use output for 
boosting

use output for 
boosting

0 8

(b) Illustration of first boost step. Divide the
sample into two subsamples and run a boost
training on each sample separately.

Figure 9. Structure illustration of the weight-network boost chain. The output from the first
network is used as boost weight in the successive layers weight-networks.

One weight-network will learn the differences between events with very high and very low
values of varX but it will not be very sensitive to differences in events which are closer in varX.
Thus in order to refine the weight quality the dataset is split in a Haar-wavelet expansion. In



each step, the previous training sample is split in the middle of varX into two subsamples and
on both a boosted weight-network is trained with the adapted target definition. An illustration
of the first step of this procedure is shown in figure 9(b). It is repeated several times (3 times
in our example) until the following boost networks are not able to learn new information.

A ”boosted network“ in this case refers to a special training mode, in which the output
from one network is used as weight for the trainings in the next layer of networks. The weight-
network boost weight is derived by transforming the NeuroBayes output into the probability

p = NBout+1
2 . This is already the weight if the event was a non-target (!T) event in the

previous training, otherwise the weight is 1 − p. In general this choice of weights leads to a
enhancement of events which have been misclassified by the previous network, since these will
get higher weights.

For the example shown here, a tree with 4 layers was used, which consists of 1+2+4+8=15
NeuroBayes networks which were trained successively on different subsamples as boosted
networks (except the first one of course). In order to calculate the discriminator-training weight
for each event one has to multiply the returned probability of the four corresponding weight-
networks depending on its value of varX.

The weighted distribution of varX is shown in figure 8(c). It looks similar to the ones
reweighted to the inclusive distribution (sum of signal and background), but it yields better
performance as we will see next.

4.3. Performance comparison
In summary six different NeuroBayes trainings with different weights were performed. The full
list of all trainings and whether they used varX as input or not can be seen in table 1.

training title variables left out of training
inputs

weights

with varX none none
w/o varX varX none
w/o varX and corr. vars varX and variables highly corre-

lated
none

reweighted to sum varX histogram weights for flat
shapes

reweighted flat varX histogram weights for inclu-
sive shape

reweighted with NB boost chain varX NeuroBayes boost chain de-
rive weights

Table 1. List of trainings, showing which variables were left out and which weights are applied

There are 31 variables available in the trainings sample, including varX. In most trainings
all but varX are used. For one training also varX is included and in another varX and those
variables which are highly correlated to it are excluded.

The fitness of MVAs is usually compared by means of discrimination power. In order to deduce
whether one MVA is better than the other, so called ROC (receiver operating characteristic)
curves are compared. In figure 10(a) the background efficiency versus the signal efficiency is
shown for the different NeuroBayesExperts (i.e. the part of NeuroBayes[1] which is used after
the training for the actual classification).

As can be seen the NeuroBayesExpert which was trained without varX and all correlated
variables yields the worst performance, as expected. The network which yields slightly better
performance than the others is the one with all variables included and no weights applied but
all the other four are close by.
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Figure 10. Benchmark results for different NeuroBayes trainings concerning discrimination
power and background flatness after discriminator cuts.

Since a good separation power is not the only figure of merit in this task, but we also want the
background distribution to remain flat after discriminator cuts, we defined a second benchmark
to evaluate which training type is suited best for our needs. The goal there is to measure the
insensitivity of the background distribution of varX to discriminator cuts. Therefore straight
lines were fitted to the central range of the distribution after several discriminator cuts and
the slopes were compared. Such an example of a fitted line is shown in figure 7 in the right
plot. The slope values for all the background distributions after several cuts on each of the
NeuroBayesExperts are shown in figure 10(b).

Cuts were made in steps of 0.2 in the discriminator range [-1,1]. The results of a cut at 0.8
are not shown, since the fits did not yield reasonable results due to the small statistics in the
remaining distribution.

The black line illustrates the behaviour of the ordinarily trained NeuroBayes network
including varX in the inputs. With harder cuts the slope of the distribution of the remaining
events gets steeper, which is the unwanted feature we are trying to avoid. The second worst
slope behaviour is returned by the network which was trained without varX and without any
weights applied. This already gives quite an improvement, but due to the variables correlated to
varX the slopes still rise. Leaving out also the correlated variables leads to the light blue points,
which is the second best in this comparison, but yielded the worst discrimination performance.
In this benchmark the slope remains the flattest when cutting on the network which was trained
with NeuroBayes boost chain weights (since it is even better than the one without varX and
correlated variables, there still seems to be some correlation left). This means the effort of
using 15 NeuroBayesExperts for the weight calculation is worthwhile, since it yields a good
discriminator while keeping the background distribution of the remaining events flat.



5. Summary and Conclusion
We’ve presented three use cases in which NeuroBayes was either used to calculate individual
weights for each event and/or weights were used to train NeuroBayes in a special way. These
are not just theoretical concepts, but we have shown, that they are applicable in practice.

(i) We have used NeuroBayes to calculate individual MC event weights which were able to
correct significant differences in the distribution of two variables between pseudo data and
MC, while keeping the already matching ones untouched. The latter one is an advantage of
MVA deduced weights over most commonly calculated scale factors since they usually are
not able to take all correlations fully into account.

(ii) the sPlot method was presented which has already been successfully used in real physics
analysis to train NeuroBayes on real measured events without the need for any generated
MC events. The only prerequisite is that a signal peak is visible and can be modelled in
order to deduce a probability density function for signal and background for calculating the

sPlot weights.

(iii) The third use case of advanced event weights we have shown will train a discriminating
network in such a way, that the shape of the distribution of a certain control variable
is barely influenced by making selection cuts on the discriminator. This is achieved by
training a tree like chain of NeuroBayes networks in order to absorb any information about
the control variable into an event weight, which will make the discriminating-network blind
to any control variable information.

Appendix A. Training of MVAs and where weights are taken into account
From the mathematical point of view, a well trained discriminating MVA is a non-linear
transformation

f(−→x ∈ Rn)→ y ∈ R

such that a loss function

err(y) =
∑
i

g(yi, ti) ( g(y) could be χ2 for example)

is minimal with respect to the target value t (usually t = 1 for signal and t = 0 or −1 for
background).

Introducing weights leads to

err(y) =
∑
i

wi · g(yi, ti)

So according to their weights, events are taken into account differently when minimizing the
loss function. It can be understood as emphasizing certain events and suppressing others during
the training procedure. This can be used to achieve several effects during a training.
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