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Abstract. This paper describes P-BEAST, a highly scalable, highly available
and durable system for archiving monitoring information of the trigger and data
acquisition (TDAQ) system of the ATLAS experiment at CERN. Currently this
consists of 20,000 applications running on 2,400 interconnected computers but
it is foreseen to grow further in the near future. P-BEAST stores considerable
amounts of monitoring information which would otherwise be lost. Making this
data accessible, facilitates long term analysis and faster debugging.

The novelty of this research consists of using a modern key-value storage
technology (Cassandra) to satisfy the massive time series data rates, �exibility
and scalability requirements entailed by the project. The loose schema allows
the stored data to evolve seamlessly with the information �owing within the
Information Service.

An architectural overview of P-BEAST is presented alongside a discussion
about the technologies considered as candidates for storing the data. The
arguments which ultimately lead to choosing Cassandra are explained.
Measurements taken during operation in production environment illustrate the
data volume absorbed by the system and techniques for reducing the required
Cassandra storage space overhead.



1. Introduction

ATLAS is one of several experiments built along the Large Hadron Collider at CERN,
Geneva. Its aim is to measure particle production when protons collide at a very high
center of mass energy, thus mimicking the behavior of matter a few instants after the
Big Bang. The detecting techniques used for this purpose are very sophisticated and
the amount of digitized data created by the sensing elements requires a very large
data acquisition system [1]. This consists of a few tens of thousands of applications
that operate on the physics data since the moment it leaves the detector until it is
archived on disk. All these applications publish their monitoring information in a
central repository called the ATLAS on-line Information Service [2].

The experiment is successfully taking data since the end of 2008 and the trigger
and data acquisition is now in production. Among the current development e�orts
is the addition of easy to use and intuitive tools to aid experts monitor di�erent
components or subsystems. P-BEAST is an example of such a tool. It archives
monitoring data at unprecedented levels of granularity giving experts access to detailed
information about what happened in the system at a certain point in the past.

1.1. Dataset and workload considerations

The Information Service (IS) represents the data source. It is important to analyse
the behaviour of this system in order to understand the information volumes it is
capable of generating, the way this data can be acquired and the dynamics of the data.
IS consists of a con�gurable set of server processes where most TDAQ applications
publish histograms and state variables. Examples of such variables are the total system
memory used by a particular application or the number of physics events processed
by an event �lter application.

IS servers have two main types of clients: information providers and information
receivers. As already mentioned, the providers are applications running in the TDAQ
infrastructure. They can create new information objects in the IS repository or update
existing ones. Receivers can subscribe to get updates of the information objects.
The communication between the IS repository and information receivers/providers is
implemented on top of CORBA [3].

Most TDAQ applications have several variables to publish. These are grouped
in structures called information objects. An information object is the main unit of
information passed between IS clients and servers. It has a unique name (based on
the name of the source application), a �xed set of �elds (one for each variable of the
source application), a type and a microsecond precision time stamp. When such a
TDAQ application is started, it �rst registers its information objects with a certain
IS server. As the objects are updated, they are sent to the IS server. The rate at
which this occurs varies widely: some are regular and others are highly dependant on
runtime conditions thus exhibiting transient behavior with peaks of up to several tens
of thousands of information object updates per second. Another key aspect to point
out is that all the �elds of an information object are sent in every update regardless
of whether they changed their value or not. This leads to data duplication that has
to be accounted for.

Currently the load of monitoring data from all 20,000 TDAQ applications is
spread across a total of around 230 IS servers, depending on con�guration. About half
of them contain histograms, which are already being archived via di�erent means. The



remaining ones contain the operational monitoring data, most of which is volatile. At
present the focus lies on the 87 servers which are used by the central DAQ and Trigger
systems, though an extension of the archiving for sub-detector speci�c information
could be envisaged in the future. The total number of information objects published
within these 87 servers is approximately 200,000. On average there are 10 �elds in
each object giving a total of 2,000,000 variables that need to be persisted for long term
access. These variables are of primitive types directly mapped to C++ basic types
(8,16,32,64 bit signed and unsigned integers; boolean; �oat; double; string) and arrays
of those.

2. Requirements

The goal of the P-BEAST project is to design and implement a generic mechanism
to store a subset of operational monitoring data of the ATLAS TDAQ system into a
suitable database and provide an e�cient means for retrieving that data. The reason
why this data should be persisted is to allow the data �ow experts to analyze the
quality of data taking a posteriori, accessing by means of specialized dashboards,
information that is stored in a permanent location.

2.1. Users

P-BEAST will be used by any system expert who wants to have a more holistic view of
certain interesting elements of the TDAQ data �ow that took place in the past (days,
weeks, months, years). Such functionality is useful for o� line analysis: to understand
the behavior of di�erent parts of the system, to make comparisons between data taking
sessions of the ATLAS detector, to investigate problems, to correlate data etc. This
data can serve as evidence of system operation in reports, presentations or papers.

2.2. Functional requirements

2.2.1. Insertion path P-BEAST has to take into account the structural evolution
of the data published within the Information Service. Since the information objects
are completely con�gurable they can change over time. A recent example is the
implementation of a logical subdivision of racks which lead to lots of changes in the
information object names. The addition/deletion of �elds of an information object,
from one data taking session of ATLAS to another, is also possible.

The operational data must be permanently persisted. Data up to several months
has to be readily available, while data older than that has to be moved to CERN's
long term storage system: CASTOR [4]. The stored information should not loose its
granularity over time.

P-BEAST should be able to replicate/transfer data outside of the ATLAS enclosed
network where the data providers (IS servers) reside, in order to allow for accessibility.

2.2.2. Retrieval path The system needs to be able to handle random time based
queries. Given the names of the information objects and �elds together with a time
interval, the requested data (plus associated meta data) has to be returned in an
e�cient manner. With this time series data at hand, the client, which could for
instance be a web dashboard [5], can correlate and aggregate di�erent data streams
prior to display.



3. System architecture

Figure 1 shows the architectural view of P-BEAST: insertion and retrieval parts are
clearly separated.

Figure 1: P-BEAST architecture

3.1. The insertion part

Consists of multiple information gathering agents. These are completely independent
and con�gurable applications that perform identical tasks: gathering, processing
(decomposing, unmarshalling, �ltering) and database insertion. At start up, each
of them makes an initial subscription to a subset of IS servers, de�ned in their
con�guration �le, and then waits to receive information objects. Each individual
�eld is converted to the appropriate type and passed to a collection of �lters. These
share a common interface which allows them to be plugged in (the �lter class names
are speci�ed in the con�guration �le) such that new �lter implementations can be
added without the need of modifying application code. Filters can be con�gured to
target individual �elds within a unique IS object or can have a broader reach.

Currently there are two �lter implementations employed. The default is
discarding duplicates generated by successive updates of information objects
containing the same �eld value. This is a characteristic of the Information Service that
simply resends the entire information object even if none of its constituents changed
value since the last update. The second �lter implementation applies smoothing to
numerical values only. A certain �eld value is rejected if it is within a prede�ned range
from the last value inserted. This range is de�ned in terms of percentages.

Field values that are accepted by all con�gured �lters are placed in a batch. When
the batch reaches a certain size it is passed to a database access object that performs
a batch insertion into the database.

3.2. The retrieval part

Is based on a similar concept as the insertion part with multiple independent clients.
Each client will access the database through a common retrieval API. In the simplest
scenario, the functionality provided by the API can be used by a custom analysis
application. More advanced clients would receive HTTP requests (like the ones issued
by the ADAM dashboard [5]) which they would map to P-BEAST API calls. The
data returned would be arranged in a client speci�ed format (JSON, XML, CSV etc.).



4. Database platform considerations

Initially relational database technologies were considered as the storage platform for
P-BEAST. A simple exercise in mapping IS information to the relational model lead
to the conclusion that the �xed tables cannot provide the �exibility necessary to
easily and e�ciently track information object structure over long periods of time. In
order for this to be attained, de-normalization has to be employed. This technique
places considerable burdens on maintenance. The complexity of retrieval queries grows
and performance decreases as the data set grows larger. Moreover, the high rates of
insertion are generally problematic for relational databases. The solution is scaling
up by using more powerful machines in terms of RAM and CPU. For extremely large
datasets this strategy becomes costly.

A whole range of alternatives were evaluated. Part of them belong to a
technological trend called NoSQL [6] (e.g. Cassandra [7][8], HBase [9], MongoDB [10]).
This term brings together a plethora of distributed structured storage systems that
are very di�erent in implementation and data models but which share a few common
aspects like: �exible schema, horizontal scalability, non-ACID [11] etc, which can
bring an advantage to P-BEAST in terms of ease of development, scalability and
performance. Due to the abundance of solutions it was found that the fastest way to
choosing a �nal candidate for the storage component of P-BEAST was to �lter them
against a set of criteria: open source, good �t to the use case of P-BEAST, read/write
performance, community activity, ease of deployment and maintenance.

RRDTool [12], Graphite [13] and OpenTSDB [14] are speci�cally built for
handling monitoring time series data but were ruled out for their lack of
generality (only support numerical values) and loss of granularity. KDB [15] is a
highly performing tool used for storing and processing �nancial time series data.
Unfortunately it is a commercial product and just the 32 bit version is available
openly with not much active development. HDF5 [16] is a �le system with a library
that provides functionality to access the �les. It has a rich data set that supports
multidimensional arrays but does not have any data management functionality.
MongoDB is a document-oriented storage system that provides very high schema
�exibility. It can be used as a fast storage system for analytics data but at the moment
when it was evaluated it was not durable, meaning that data could be potentially lost
after a machine failure because it is initially cached in RAM. Also, MongoDB performs
really well only if the indexes �t entirely in memory. As the data size of IS is large
this was most likely going to cause di�culties and would entail scaling up.



(a) Work load: 95% reads / 5%
updates

(b) Work load: 50% reads / 50%
updates

Figure 2: Update (write) latencies - from [17] p.9

In evaluating Cassandra and HBase it was found that the primary use case
of Cassandra, high availability and write performance with optimized queries for
retrieving slices of values, is a better match for P-BEAST than that of HBase which is
more focused on real time queries and performing computation across large data sets.
The relative performance of the two is shown by a study published by Yahoo! [17]
containing benchmarks under di�erent load conditions. These were obtained using
their cloud serving benchmarking platform [17] which is available for free and can be
easily adapted to stress test any storage system.

Figure 2 shows the update (write) latency as a function of the load placed on each
platform, for two di�erent work loads: read intensive (95% of the operations are reads)
and balanced (reads and writes occur in the same proportion). The second workload is
closer to the intended usage of the platforms because the use case of P-BEAST entails
writing for the majority of the time. In the read intensive workload (�g. 2a) clearly
HBase performs better but in the workload with more writes (�g. 2b) even though
HBase outperforms Cassandra's to start with, it proves incapable of handling loads
higher than 8,000 operations/sec. Cassandra's write latency remains stable across
higher loads. This is a desired feature to have in order to satisfy the potentially
growing loads generated by the ATLAS Information Service. For the read latency
under the same two workloads (Figure 3), Cassandra presents superior performance
showing it is a better �t for content retrieval.

(a) Work load: 95% reads / 5%
updates

(b) Work load: 50% reads / 50%
updates

Figure 3: Read latencies - from [17] p.8



The main reasons why Cassandra is in a better position than the others to become
the platform of choice are:

• Cassandra o�ers the best �t to the use cases of P-BEAST

� Lots of writes with signi�calntly less read operations
� Can absorb peaks in the write rates [18]
� Designed to handle a very high write load (thousands of operations per
second) [19] from multiple clients

• Easy to increase performance by just adding more machines (scales linearly with
the number of machines assuming that keys are randomly distributed which is
the case in real data sets)

• Ease of deployment (facilitates the fast prototyping approach used for P-BEAST)

• Low maintenance requirements (important for the long term intended use)

Cassandra is a key value storage system that operates as a distributed hash map. Due
to its simple data model, it has a strong use case for storing large amounts of time
series data (used by Cloudkick [19] for monitoring cloud infrastructure). Each value
inserted has to have an associated key and a name. The key identi�es the row where
the name value pair is placed. Each row stores name-value pairs sorted by the name.
This essentially provides two indexes for retrieving values: an index on row keys and
one on names inside a row. Data is distributed within a cluster of nodes by applying
MD5 function to the key. Each cluster node is assigned a particular range of MD5
hash values. All the name value pairs of a particular row will be stored on the node
responsible for the range where that row key hashed to.

Cassandra was inspired from Amazon's Dynamo [20] where it got the distributed
ring arrangement and its high availability. Furthermore it borrowed the storage data
model and basic insertion and retrieval mechanisms from Google's Big Table [21]. It
uses the SEDA [22] architecture for multi threading which allows more control on the
computation process. To communicate with any Cassandra node there is an API on
top of Apache's Thrift [23] protocol which allows remote procedural calls and facilitates
communication between applications written in di�erent languages.

5. Results

(a) Update transactions per second (b) Batch insertions per sec

Figure 4: Insertion rates measured while runnning during ATLAS recording physics
data



Deploying P-BEAST (with six gathering instances) in the TDAQ infrastructure
while ATLAS is recording physics events reveals the rates shown in Figure 4. The
gathering agents are con�gured with only the default duplicates �lter and send data
to a three node Cassandra cluster (each node has a 4 core processor, 4 GB of RAM
and separate rotational disks for the commit log and the data directories). Figure 4a
represents a measurement of the total update transactions per second received by
all six P-BEAST gathering instances from the 87 IS servers of interest. An update
transaction corresponds to an information object being transferred over the network to
P-BEAST. The plot shows the irregular tra�c that the Information Service generates
with an average of 9,200 updates per second. This input load is transformed by
�ltering and batching into a load presented to Cassandra depicted in Figure 4b. On
average 28.3 batches/sec are inserted. With a measured average of 226KB of data per
batch, the Cassandra cluster thus handles an average of 6.4 MB/sec of input data.

The Cassandra meta data can have a signi�cant impact on the required storage
space. The storage space needed for the ATLAS partition during a test was estimated
based on standard formulas [24] for calculating Cassandra overhead for rows and name
value pairs (essentially for the native indexes o�ered, bloom �lters etc). The formulas
described in Table 1 were fed with several statistics gathered during 15 minute tests:
the total number of rows created during the test (TNR), the total number of name
value pairs inserted (TNC), the average number of name value pairs per row (NC),
the average sizes of row keys and of names (RKS).

Table 1: Cassandra storage space: 100 sec vs 1000 sec time bins

Measurement 100 sec bins 1000 sec bins

Raw data inserted[Sum (size of name + size of value)] 1.5 GB 1.3 GB

Name value pairs overhead [TNC x 15] 287.9 MB 398.49 MB

Row header overhead [TNR x 23] 103.5 MB 51.93 MB

Row bloom �lter[TNR*(2 + (8 + ceiling((NC * 4 + 20) / 8))) ] 67.94 MB 42.2 MB

SSTable index[TNR * (10 + RKS)] 783.5 MB 386.5 MB

SSTable bloom �lter[(TNR * 15 + 20)/8] 8.4 MB 4.2 MB

Base Storage (BS) 2.7 GB 2.2 GB

Raw data inserted (% BS) 54% 60%

Column Overhead (% BS) 10% 18%

Row overhead (%BS) 4% 2%

SSTableOverhead (%BS) 29% 18%

These calculations were performed in order to test the impact of various Cassandra
schema parameters on the storage e�ciency. The schema employed uses Cassandra
rows as time bins. The time bins are implemented in the following manner: for each
new �eld of an incoming information object, a Cassandra row key is computed by
concatenating the 8th (for 100 sec bins) or 7th (for 1000 sec bins) most signi�cant
digits of the object time stamp, to the object name and the �eld name. The e�ect of
computing the row keys in this way is that the value of a certain �eld is inserted in the
same row if two successive updates are received within the same time bin, essentially
stacking name value pairs in the same row.

By varying the length of the bins from 100 second to 1000 second, the number of
rows is reduced while the average number of name value pairs per row is increased. The



results of storage space estimation is depicted in Table 1. The same test con�guration
described earlier was used to perform these tests. The �gures in the table clearly
show that by enabling longer time bins the row and SSTable ‡ overhead are reduced
by almost half. This change also has a positive e�ect on retrieval query performance
because it improves data locality (the name-value pairs in one row are always stored
on the same machine in the cluster).

Figure 5: Estimated Cassandra storage space for di�erent degrees of smoothing

Despite metadata optimizations, the amount of raw data being stored is still high.
In order to further reduce the intake of information smoothing �lters are applied in
addition to the default one (duplicates �lter). Figure 5 shows the estimated base
storage requirements using the same techniques described before. The data rates
are lower because the tests were performed on a more limited infrastructure. The
procedure adopted was to run the system, in the same con�guration (6 P-BEAST
gathering agents and 3 node Cassandra cluster), in 4 separate 12 minute tests. Each
test had increasingly restrictive smoothing applied, ranging from no smoothing to 20%
smothing. The e�ect of smoothing is to decrease the storage space up to 38%.

6. Conclusions

P-BEAST is a system that maintains an archive of operational monitoring data which
would otherwise be lost. Access to this history helps data �ow experts debug problems
occurring within the infrastructure and make analysis of past behavior.

The writing part of P-BEAST has been tested in the production environment.
On-going tests within the TDAQ infrastructure indicate that P-BEAST is capable
of absorbing the load produced by the 87 servers of interest of the ATLAS
TDAQ Information Service, thanks to the intermediate bu�ering and to Cassandra's
extremely high write performance. The results presented here show the data rates
handled and the possible optimizations that can be performed with respect to storage
space occupancy. The raw input data rates can be further controlled by applying
smoothing. The smoothing factors are completely con�gurable which allow probing
the limits of relevancy of applying this kind of �ltering for di�erent sources of data in
the future.

Further work will involve �nishing insertion tests/optimizations and the long term
storage space estimates. These will feed into the proposal for acquisition of new
machines to deploy the Cassandra cluster on. Retrieval performance measurements
will follow as well as development of the reading clients.

‡ An SSTable is the representation on disk of data [25]
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