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Abstract. We present additions and improvements in Version 7 of FormCalc, most notably
analytic tensor reduction, choice of OPP methods, and MSSM initialization via FeynHiggs, as
well as a parallelized Cuba library for numerical integration.

1. Introduction
The Mathematica package FormCalc [1] simplifies Feynman diagrams generated with FeynArts
[2] up to one-loop order. It provides both the analytical results and can generate Fortran code
for the numerical evaluation of the squared matrix element.

This note presents the following improvements and additions in FormCalc 7 and the numerical
integration package Cuba [3], which is included in FormCalc:

• Analytic tensor reduction,

• Unitarity methods (OPP),

• Improved code generation,

• Command-line parameters for model initialization,

• MSSM initialization via FeynHiggs,

• Built-in parallelization in Cuba.

2. Analytic tensor reduction
Despite the hype that surrounds unitarity methods today, the Passarino–Veltman decomposition
of tensor one-loop integrals [5] remains a valuable technique, also because it admits a fully
analytic reduction. The complete tensor reduction consists of two steps:

• The Lorentz-covariant decomposition of the tensors of the loop momentum appearing in
the numerator into linear combinations of tensors constructed from gµν and the external
momenta with coefficient functions, e.g.

∫
d4q

qµqν
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∼ Bµν = gµνB00 + pµpνB11 .

This part has always been performed in FormCalc, as the actual tensors are rather unwieldy
objects for further evaluation.

• Solving the linear system that determines the coefficient functions, i.e. expressing the
coefficient functions through scalar integrals.



FormCalc has for long included the add-on FormCalc‘btensor‘ package which analytically
reduces one- and two-point functions when loaded, but higher-point functions could be reduced
only indirectly through FeynCalc [4], i.e. the user had to save the amplitudes with FeynCalcPut,
run FeynCalc in a different Mathematica session, and load the reduced expressions into FormCalc
again with FeynCalcGet. This procedure was not only suboptimal in terms of user-friendliness
but also did not take advantage of the field levels of FeynArts, i.e. FeynCalc always operated on
the fully inserted amplitudes rather than the (typically much fewer) Generic amplitudes.

The analytic tensor reduction is meanwhile properly available in FormCalc and can be turned
on through the option

CalcFeynAmp[..., PaVeReduce → True]

Our code implements the reduction formulas of Denner and Dittmaier [6]. While these are fully
worked out, it nevertheless took considerable effort to program them in FORM due to at first
sight trivial issues, e.g. that there is no straightforward way to obtain the N -th argument of a
function. Adding the reduction code to the Mathematica part of FormCalc instead was not an
option, however, as we wanted to operate on the Generic amplitudes, before the substitution of
the insertions, and this happens in FORM.

Inverse Gram determinants, which appear as a by-product of inverting the coefficient-function
system, may lead to instabilities in the numerical evaluation later on and therefore FormCalc
tries to cancel them as much as possible. The ones that cannot be cancelled immediately are
returned as IGram[x] (= 1/x) and so can easily be found and processed further in Mathematica.

3. Unitarity methods (OPP)
We employ the OPP (Ossola, Papadopoulos, Pittau [7]) unitarity method as implemented in
the two libraries CutTools [8] and Samurai [9]. Instead of introducing tensor coefficients as in
the last section, in this case the whole numerator is placed in a subroutine, as in:
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2) , where N(qµ) = (ε1 · q) (ε2 · q) .

The numerator subroutine N will be sampled by the OPP function (Bcut in this example). The
first argument of Bcut, 2, refers to the maximum power of q in N .

Subexpressions of the numerator function (coefficients, summands, etc.) which do not depend
on q are pulled out and computed once, ahead of invoking the OPP function, using FormCalc’s
abbreviationing machinery [10]. In particular in BSM theories, these coefficients can be lengthy
such that pulling them out significantly increases performance.

Our implementation admits mixing Passarino–Veltman decomposition with OPP in the sense
that one chooses an integer n starting from which an n-point function is treated with OPP
methods. For example, OPP → 4 means that A, B, C functions are treated with Passarino–
Veltman and D and up with OPP. A negative n indicates that the rational terms for the OPP
integrals shall be added analytically whereas else their computation is left to the OPP package.

The CutTools and Samurai libraries have minor differences in calling conventions but are
otherwise similar enough to let the preprocessor handle the switching. That is, one does not
need to re-generate the Fortran code in order to link with the other library. Specifically, the
following steps must be taken in order to use the OPP method in FormCalc:

• The amplitudes must be prepared with CalcFeynAmp[..., OPP → n] (n < ∞).

• In the generated code, the OPP library (CutTools or Samurai) must be chosen and the
declarations in opp.h be included. This is most conveniently done in user.h, in the following
structure:



#ifndef USER_H

#define USER_H

* declarations for the whole file (e.g. preprocessor defs)

#define SAMURAI (or CUTTOOLS)
#else

* declarations for every subroutine

#include "opp.h" (necessary for OPP)
#include "model_sm.h"

#endif

As for testing, we have currently compared a handful of 2 → 2 and 2 → 3 scattering reactions,
both QCD and electroweak, and found agreement to about 10 digits between Passarino–Veltman
and OPP, with CutTools and Samurai delivering similar results. This shows that the method is
working.

Performance is somewhat wanting as of now, however. For the tested processes, quite frankly,
Passarino–Veltman beats OPP hands down. To be fair, OPP was in the first place designed to
increase the reach of one-loop calculations to higher-leg multiplicities and not so much to speed
up the ones with not so many legs such as those we have looked at so far. Nevertheless, there
seems to be room for improvement on a technical level and we are certainly continuing work on
optimizing the performance.

4. Improved code generation
The main subroutine SquaredME.F is now sectioned by comments, to aid automated substitution
e.g. with sed. For example, the variable declarations are enclosed in

* BEGIN VARDECL

...

* END VARDECL

Furthermore, the generated code and the driver files are consistently formulated in terms of
the newly introduced RealType and ComplexType data types, by default equivalent to double

precision and double complex, respectively. Note that capitalization matters as these words
are substituted by the preprocessor. This introduces a level of abstraction which makes it easier
to e.g. work with a different precision.

More importantly, work is ongoing to produce output in C (C99 to be precise, for support of
complex numbers), in addition to the Fortran mode. The advantages are threefold:

• It makes integration of generated code into existing C/C++ packages still easier (no linking
hassles) while not impeding use in Fortran, i.e. even though it is not planned to remove the
native Fortran output in a future version of FormCalc, a Fortran user will be able to link
with the C object files directly without any changes to his code.

• It makes GPU programming feasible without reverting to commercial Fortran compilers.

• One can take advantage of C’s long double data type which, at least on Intel x86 hardware,
gives an additional 2–3 digits of precision at essentially no extra cost. Extended real data
types in Fortran, if available at all, are usually IEEE-754-compliant REAL*16 emulated in
software.

5. Command-line parameters for model initialization
FormCalc includes a suite of so-called driver programs to manage the automatically generated
code for computing the squared matrix element. They parse the command line, initialize model
constants, set up phase space, etc.



In particular the driver modules for the initialization of the model parameters and luminosity
calculation (which includes e.g. the setup of PDFs used in hadronic reactions) had no access to
the command-line arguments so far and could use only variables supplied by the user in the main
control program run.F. In other words, the model inputs and PDF selections were ‘compiled in’
and the executable had to be re-built every time those values changed.

The present command-line parser accepts so-called colon arguments (arguments starting with
a ‘:’) before the usual ones on the command line, as in:

run :arg1 :arg2 ... uuuuu 0,1000

The colon arguments are read into an array (sans colon) and handed to the model-initialization
and luminosity-calculation subroutines:

subroutine ModelDefaults(argc, argv)

subroutine LumiDefaults(argc, argv)

integer argc

character*128 argv(*)

Note that, unlike in C (char **argv), fixed-length strings are passed in argv since there are no
pointers in Fortran 77. It is up to the ModelDefaults and LumiDefaults subroutines to handle
the arguments. In Fortran it is furthermore no fatal error to have no formal arguments in the
ModelDefaults and LumiDefaults subroutines (as in previous FormCalc versions), so old code
will compile and run without change.

6. MSSM initialization via FeynHiggs
The colon arguments of the previous section are immediately put to use for the initialization of
the MSSM through FeynHiggs [11]. The default MSSM initialization is a stand-alone routine
(i.e. requires no external library to be linked), but is not quite as thorough as FeynHiggs when
it comes to the corrections included e.g. in the computation of the Higgs masses.

From FeynHiggs version 2.8.1 on not only the computational engine but the entire Frontend
functionality is available through library routines so that the colon arguments can simply be
passed to a FeynHiggs subroutine to make FeynHiggs initialize itself as if invoked from its
own command-line Frontend. The FormCalc-generated code inherits thus the ability to read
parameter files in either native FeynHiggs or SLHA format, and of course obtains all MSSM
parameters and Higgs observables from FeynHiggs. There is no duplication of initialization code
this way, and moreover the parameters are consistent between the Higgs-mass and the cross-
section calculations.

To use the FeynHiggs initialization, one chooses the model-initialization module model fh.F

instead of model mssm.F. The compiled code is invoked as

run :parafile :flags uuuuu 0,1000

The colon arguments are just the ones of the FeynHiggs Frontend: parafile is the name of the
parameter file and the optional flags allows to override the default flags of FeynHiggs.

7. Built-in parallelization in Cuba
Cuba is a library for multidimensional numerical integration which is integrated in FormCalc but
of course can be used independently, too. Only the Mathematica interface was able to compute
in parallel so far, by redefining the function MapSample with e.g. ParallelMap. In the latest
release we added parallelization also to the C/C++ and Fortran interfaces.

We attempt no parallelization across the network, say via MPI. That is, we restrict ourselves
to parallelization on one computer, using operating-system functions only, hence no extra



software is required. A common setup these days, even on laptops, is a single CPU with a
number of cores, typically 4 or 8. Utilizing many more compute nodes, as one could potentially
do with MPI, is more of a theoretical option anyway since the speed-ups cannot be expected to
grow linearly.

We use fork/wait rather than the pthread* functions. The latter are slightly more efficient
at communicating data between parent and child because they share the same memory space
(the fork/wait version uses pipes instead), but for the same reason they also require a reentrant
integrand function, and apart from the extra work this takes, a programmer may not even have
control over reentrancy in his language, e.g. Fortran’s I/O is typically non-reentrant. fork on
the other hand creates a completely independent copy of the running process and thus works
for any integrand function.
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Figure 1. Cuba speed-ups for a three-dimensional integral on an i7-2600 Linux system (2.6.37)
with 4 real/8 virtual (hyperthreaded) cores. The vertical line at 4 cores marks the cross-over.
Left column: ‘easy’ integrand, right column: ‘hard’ integrand.
Top row: ‘fast’ integrand (1µsec), bottom row: ‘slow’ integrand (1000µsec per evaluation).
Note that also in the one-core case a parallel version is used (one master, one worker), which
explains why the timings normalized to the serial version are below 1, in the top row visibly so.
The measured speed-ups are, if anything, on the conservative side as the i7 CPUs boast a feature
named Turbo Boost which allows the CPU to scale up the frequency if not all cores are loaded,
i.e. the serial version will likely have run at a somewhat higher CPU frequency.



Changing the number of cores to use does not require a re-compile, which is particularly
useful as the program image should be able to run on several computers (with possibly different
numbers of cores) simultaneously. Cuba determines the number of cores from the environment
variable CUBACORES, or if this is unset, takes the idle cores on the present system (total cores
minus load average). That is, unless the user explicitly sets CUBACORES, a program calling a Cuba
routine will automatically parallelize on the available cores. A master process orchestrates the
parallelization but does not count towards the number of cores, e.g. CUBACORES = 4 means four
workers and one master. Very importantly, the samples are generated by the master process
only and distributed to the workers, such that random numbers are never used more than once.

Parallelization entails a certain overhead as usual, so the efficiency will depend on the ‘cost’ of
an integrand evaluation, i.e. the more ‘expensive’ (time-consuming) it is to sample the integrand,
the better the speed-up will be. To give an idea of the values that can be attained, Fig. 1 shows
the speed-ups for an ‘easy’ and a ‘hard’ one of the 11 integrands of the demo program included
in the Cuba package for two different integrand delays. To tune the ‘cost’ of the integrands,
we introduced a calibrated delay loop into the integrand functions (which are simple one-liners
and for our purposes ‘infinitely’ fast). The calibration and the timing measurements are rather
delicate and shall not be discussed here.

The first, expected, observation is that parallelization is worthwhile only for not-too-fast
integrands. This is not a major showstopper, however, as many integrands in particle physics
(one-loop cross-sections, for example) easily fall into the 1000-µsec-and-beyond category.

The second observation is that parallelization works best for ‘simple-minded’ integrators, e.g.
Vegas. The ‘intelligent’ algorithms are generally much harder to parallelize because they don’t
just do mechanical sampling but take into account intermediate results, make extra checks on
the integrand (e.g. try to find extrema), etc. This is particularly true for Divonne, where we
spent significant time to lift the speed-up curve even this far above 1 and which is still clearly
lagging in parallelization efficiency (see e.g. the bottom-left plot of Fig. 1). Then again, the
‘intelligent’ algorithms are usually faster to start with (i.e. converge with fewer points sampled),
which compensates for the lack of parallelizability.

8. Summary
FormCalc 7 (http://feynarts.de/formcalc) has many new and improved features, most
notably the analytic tensor reduction, choice of OPP methods, and the link with FeynHiggs. The
Cuba library (http://feynarts.de/cuba), also included in FormCalc, parallelizes integrations
automatically and achieves decent speed-ups for typical cross-section integrands.
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[4] Mertig R, Böhm M, Denner A, 1991, Comput. Phys. Commun. 64 345.
[5] Passarino G, Veltman M, 1979, Nucl. Phys. B 160 151.
[6] Denner A, Dittmaier S, 2006, Nucl. Phys. B 734 62 [hep-ph/0509141].
[7] Ossola G, Papadopoulos C, Pittau R, 2007, Nucl. Phys. B 763 147 [hep-ph/0609007].
[8] Ossola G, Papadopoulos C, Pittau R, 2008, JHEP 0803 042 [arXiv:0711.3596].
[9] Mastrolia P, Ossola G, Reiter T, Tramontano F, 2010, JHEP 1008 080 [arXiv:1006.0710].
[10] Hahn T, 2010, PoS ACAT 2010 078 [arXiv:1006.2231]
[11] Frank M, Hahn T, Heinemeyer S, Hollik W, Rzehak H, Weiglein G, 2007, JHEP 0702 047

[hep-ph/0611326].


