Regularization of IR divergent loop integrals
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Abstract. We report results of a new numerical regularization teamaifprinfrared (IR) divergent loop
integrals usinglimensional regularization, where a positive regularization parametesatisfying that the
dimensiond = 4 + 2¢, is introduced in the integrand to keep the integral from jirgg as long as > 0.

A sequence of integrals is computed for decreasing valuegsinforder to carry out éinear extrapolation
ase — 0. Each integral in the sequence is calculated accordingetbittect Computation Method (DCM)

to handle (threshold) integrand singularities in the ioteof the domain. The technique of this paper
is applied to one-loopV-point functions. In order to simplify the computation oktimtegrals for small
e, particularly in the case of a threshold singularityreduction of the N-point function is performed
numerically to a set of 3-point and 4-point integrals, aDE€M is applied to the resulting vertex and box
integrals.

1. Introduction
The integral for am-dimensionalV -point Feynman diagram with loops can be represented as
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Here the functionsF andi/ are polynomials determined by the topology of the corredpanFeynman
diagram [1]. A mechanism for the evaluation iofrared (IR) divergent multi-loop integrals of the
form (1) by sector decomposition and dimensional reguddion is given in [2].

We consider the one-looly-point function, denoted in [3] by
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wherer, = Zlepj; the p; andm; are the external loop momenta and the corresponding marticl
masses, respectively. In order to account for IR divergetheeformalism of dimensional regularization
can be applied by setting the dimension= 4 + 2¢. The integral in Eqn. (2) then generalijverges as

e — 0 (n — 4). Itis expanded with respect tg via sector decompositions of the integration domain
and expansion of the integrand aroun 0 in the resulting sector functions.



The expansion coefficients are calculated in [4] using FOBMds sums of multivariate integrals
assembled from contributions over the sectors. The coficiare derived in [6] by expanding the
expressions for the integrals directly, based on propedidhypergeometric and related functions. We
make use of the asymptotic behavior to compute the coeftscimummerically by a linear extrapolation.

We construct éinear system of equations, which incorporates values of the integraflémreasing in
the right hand side of the system. The linear system is egtbhgl one equation at a time and solved for
the leading coefficients of the Laurent expansion of thegirstie This gives rise to an extrapolation as
tends to zero. The solutions can be obtained by solving tstesys directly or by aecursive method [7].

We will make use oBulirsch [8] type sequences of the forbp = 2,3,4,6,8,12,16,24, ..., in order to
sete =gy = 1/by.

In previous work [9, 10] we applied thdimensional extrapolation to infrared cases where the
integrand denominator does not vanish in the interior ofitibegration domain. In [11] we dealt with
vanishing denominators for vertex (triangle) integral$.pfesent we target one-log-point functions
after their reduction to vertex and box integrals accordimg12, 3], and sector decompositions to
disentangle overlapping singularities along multiple rdimate axes. These will allow for an efficient
numerical computation of integrals which suffer from bdireshold singularities inside the domain, and
IR divergence causing singular behavior at the boundafiggedntegration region.

All computations are numerical and performed with automatiegration code after reduction and
sector decompositions, as implemented usingQPACK in [13] for non-IR divergentV-point functions
through the hexagon. The basic vertex and box functions @rguated with techniques of tHairect
computation method (DCM) [14, 15, 10]:

e iterated multivariate integration, which uses one-dimensional or low-dimensional integrati
techniques repeatedly [14, 16, 17];

e nonlinear extrapolation by thee-algorithm [18, 19], to handle singularities inside the dom

DCM relies on the one-dimensionalu@prPAck [20] numerical methods RAG and DQAGS, which are
deterministic and adaptive. @GS also uses a nonlinear extrapolation internally, for treplgebraic
and algebraic-logarithmic integrand singularitiddCM introduces a termid with finite 6 > 0 in the
integrand denominator, and extrapolates a sequence gfahtealues for decreasing valuesdf

It is our goal in this paper to extendCM to IR divergent integrals which may have threshold
singularities, in particular for the basic triangle and &ments in the decomposition, by resorting
to adouble extrapolation or regularization (with respect tbande) if needed.

In Section 2 we review theeduction and sector decomposition formalism of one-loop/N-point
functions into triangles and boxes. Section 3 explains thedsional extrapolation by solving a linear
system, or by using a recursive method developed for Vanaledmtype systems in [7]. The use of the
linear extrapolation is validated by the underlying asywtiptexpansions for the vertex and box sub-
problems, which leads to the double extrapolation for IRdjent problems where the denominator also
vanishes in the interior of the integration domain. Nunariesults of the procedures are given for
sample problems in Section 4.

2. Reduction overview

Through the reduction formalism applied in [3], thedimensional hexagon, pentagon and box functions

are expressed in terms nfdimensional triangle andy(+ 2)-dimensional box functions.
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where S is defined by Eqgn. (3),G is the Gram matrixGy, = 2rre, k,¢ = 1,--- ,N; and the
reduction coefficient®3, = — Zfil S,;ll can be obtained by solving the system of linear equations



Zévzl SweBe=—1, k=1,..., N.Infrared singularities emerge through poles in the integtpansions
as a function ot wheren = 4+ 2¢. Thus then-dimensionalV-point function is decomposed as a linear
combination ofn-dimensionalN — 1-point functions, and a remainder term which involvesiaH(2)-
dimensionalV-point function. It is noted in [3] that the latter is IR finjteven in the massless case. In
particular, denoting the Mandelstam variabdgs= p? ands;;. . = (p; + p; + ...)%, the IR behavior in
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is confined to the triangle integrals.
The integral} and ;"2 are split into sector functions of the form
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whereP(; » 3) is the set of the cyclic permutations (@f, 2, 3), and
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The basic triangle and box functions satisfy the integrptesentations
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where the function®r,.; andDp,, are quadratics,
Dryi =(—s1)t1 + (—s2)tits + (—s3)ta + (1 + t1 4 t2)(Eym? + tym3 + m2) — i0
DBor =(—812)ta + (—s93)t1ts + (—s1)t1 + (—s2)t1te + (—s3)tats + (—s4)t3
+ (1 4 t1 +to + t3)(tym? + tom3 + tym3 +m3) — i0 (10)

The functions (8) and (9) will be computed with the integyatitechnique oDCM, and anonlinear
extrapolation will be performed when denominators vanish within the indégign region. This
calculation will be carried out for each valueoheeded in thelimensional extrapolation ase — 0.

3. Linear extrapolation
Consider a functiorb(¢) which satisfies aasymptotic expansion

S(e) ~S+aipi(e) +aspa(e)+..., ase — 0,

where the functiong; (<) are known and in decreasing order, in the senselitat “"g—(ls()s) =0.



Then for a linear extrapolation we construct a sequétieg), ¢ = 0,1, - - - , and solve linear systems
of the form

ag + @1(54) al + . ..gO,,(Eg) a, = S(Eg), £=0,...,v, (1))

in the unknownsz;, j = 0,---,v, oforder(v 4+ 1) x (v + 1), for increasing values of and for
decreasing.

This process can be related to the Neville algorithm asval¢see, e.g., [7]). The interpolating
polynomial P, 4(x) of degreed for a function f(x) is defined as the polynomial of degréewhich
interpolates at the pointsy, so that

Pra(ze) = f(z), for =k—d, k—d+1,--- k. (12)

Denoting the polynomial coefficients b:)(gzl, the value of the polynomial at a particular point

d
Pra(@) = ¢y, (13)

can be calculated recursively with the Neville algorithrsing

Pro(z) = f(zk),

Pea(z) = (zr — ) Py—1,d-1(x) — (Tp—a — $)Pk,d—1(l’)’ d=1.-- .k (14)

Lk — Tp—d

Furthermore, by substituting the formuﬂé@(o) = c,(jzl 4! into Eqgn. (14), formulas are obtained for the
coefficients,

e =1 (@),
(4) (4) (3-1) (3-1)
61(531 _ Tk ckjfl,dfl — Lk—d ckj,dfl + Ck:],dfl - ckjfl,dfl ’ (15)

Tk — Tk—d
ford=1,---,k andj=1,---,d— 1.

This gives rise to an extrapolation table, where the valaeg £ 0 andj = d can be included by setting

cijdl) = c,(ﬂl) = 0. The table allows calculating the coefficients of the intéaipng polynomialP;, ;. (x)
of degreek, coinciding with f () at the pointst = xq, - - - , x;. Note thatf, = andk can play the role

of S, e andv in Eqgn. (11) above, fop;(c) = £’. In this case, the system of Eqn. (12) combined with
Eqn. (13), or Egn. (11) is a Vandermonde type system, andyf&k)s an algorithm for its solution.

4. Asymptotics
This section establishes the underlying asymptotic eXpassvhich validate the linear (dimensional)
extrapolation for various classes of vertex and box diagrand gives results for sample problems.

4.1. Vertex diagrams
Kurihara [6] derives expansions with respect tior the tensor integral of the massless one-loop 3-point
integral of rankM < 3,

3
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with
()
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In the case? = p3 = 0 andp3 # 0 with n,, = n, = 0, (16) gives

1 el(—e) [P I-z 1
J5(0,0,p2;0,0;¢) = / da:/ dy . (17)
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wherepup is the renormalization energy scale. As- 0, Js of Eqn. (17) satisfies an expansion of the
form

c_y, C
J3(0,0,p%;0,0;¢) ~ +—1+00+O() (18)

The linear extrapolation method of Section 3 can be appbetheé system of Egn. (11) with(e) =
52J3(O,0,p§;0,0;5). We gave numerical results for the coefficieiits,, C'_; and Cy of Egn. (18)
in [10].

If, in (16) with p? = p3 = 0, p3 # 0, one ofn, andn, is zero and the other is not, e.g, = n > 0
andn, = 0, then the asymptotic behavior is given by

1 C_4
J5(0,0,p2:m,05¢) ~ ——— 19
3( U, P35 1, aE) (47_‘_)2])% ( - +CO+O( )) ( )
with coefficients
1 9 1
Ca=-, Co=——+— |log(—p3)— ) -
n n il

Values for the coefficients obtained in double precision (fggnerating and solving) the system of
Eqgn. (11) withS(e) = J5(0, 0, p3; 7, 0; €) were reported in [10] fon,, = n = 2, n,, = 0 andp3 = 100,
a tolerated relative error dt) 13 for (repeated) integration with theU@DPACK program DRAGS, using
a sequence of = ¢y = b , Wwhere{b,} is a Bulirsch type sequence. The reported integration times
ranged between 0.03s and 0.09s, Bipr= 12,16, 24, --- ,384. The contribution of the times for the
actual extrapolation procedure were found to be negllgiﬁwale 1 lists results for the coefficients of
Eqgn. (19) obtained in a quadruple precision run for this f@ob

Forp? = 0, p3 # 0 andp3 # 0 in Egn. (16), IR divergence occurs when = n, = 0 or
ng # 0,ny = 0, leading to

1 Cc_
J3(0,p3, p3;m, 05€) ~ (A )22 ( 51 +Co+O(e )) (20)
3

with coefficients given in [6]. Apart from the IR divergence iadicated by the-dependence in (20), a
singularity may appear inside the integration region tgtoa zero denominator functidd in (16). For
each value ot in the sequence, the interior singularity can be handldaiGiM, by replacingiO in D by

10 and performing a nonlinear extrapolationdas> 0. Results of the double extrapolation procedure are
given in [11] for a diagram wittn,, = n,, = 0 andp3 = 40, p3 = —100.



by C_y

Co

12 0.4976817315764365660976698223580
16  0.5001453140694736901417736134445
24 0.5000001921131322347567104032762
32 0.4999999959467322713652940448364
48  0.4999999999993260163866288358759
64  0.5000000000000053069685193174512
96  0.4999999999999999722450728860463
128  0.5000000000000000001089023336541
192  0.4999999999999999999997158886319
256  0.5000000000000000000000005564493
384  0.4999999999999999999999999992988
512 0.4999999999999999999999999999980

1.376902447259218683765304
1.303021632988%3494858112
1.30256511182889087530061
1.30258507933204903401609
1.30258509326832085160900
1.302585092992266166716065
1.302585092989266166716065
1.302585092598103126312708
1.30258509256803793808956
1.30258509256800169987640
1.30258509256880179932776
1.30258509256800179914927

Exact : 0.5 1.3025850929940456840179914547

Table 1. IR vertex of Egn. (19) coefficientsy, = n = 2, n, = 0 andp3 = 100. Integration with (IAGS)?, for target
relative integration error tolerangex 10~24. Extrapolated real values (quad. precision) are given= 1/b,.

4.2. Box diagrams

The IR divergent integrally (p?, p3, p%, p3; nz, ny, n.) OCcurs in the tensor integral of a massless one-
loop box of rankM < 4,

T(4 VJ4 pl p27p37 (k)ang(/k)7n(zk))

=2 G

and is expressed in [6] using dimensional regularization as

P 92 6 l—x 1—x— y l‘ gk)y Sf)zngk)
k 2,2 .2 2 (k k k) _ —
J4 (s¢t7p17p27p3¢p4an§c)¢n§ )7ng )) - (47T) (47TNR / d.l‘/ dy / D2—€
(21)
where

D=-szz—ty(l—az—y—z) —play—psyz—piz(l—a—y—2)—pja(l—y—z) —i0.
We consider the case wheyg = p3 = p5 = p7 = 0 (all particles on-shell) and, = n, = n, = 0. The
integral of the formZ/} in Eqgn. (2), is IR divergent, and its asymptotic behavioraptared in

(4m)? (4mp%)© . . .
F(2 —6) J4 (5,t70,0,0,070’070’ 5)
1 1-z l—xz—y 1
) ! ! a 22
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Fors = t = —1, the integrand denominator of of Eqn. (22) does not vanislinénitterior of the
integration region, so that only the dimensional reguéitm is performed§ = 0). Note that, for
example, only one of the Mandelstam variables occurringpéngarameter list of the triangle functions
I3 of Eqgn. (5) is -1 and the other two are 0. The same holds for theddlstam parameters of the
triangle denominato§7. . in Eqn. (8).

Table 2 gives coefficient values resulting from the numérieduction according to (4), applied for
N = 4. The linear (Bulirsch type) extrapolation sequence is sthete = 1/8. Thus the first§ x 3)
system is solved at = 1/16. The requested accuracy was set to about 10 digits for tHe trigegration
of the (» 4 2)-dimensional box function in Eqn. (5), whereas the triarigtegrations were performed to
a tolerated error of about 12 digits. Note that the{ 2)-dimensional box function is IR finite; thus it is



by Cc_o c_q co
16  3.97866911577 4.741597564 -20.3973583
24  4.00113602366 3.932788880 -11.0511246
32 3.99996917536 4.002799778 -12.5446904
48  4.00000076575  3.999893462 -12.4436012
64  3.99999998946  4.000002142 -12.4495134
128  3.99999999980 4.000000034  -12.4493421
Exact: 4.0 4.0 -12.4493407

Table 2. IR box of Eqn. (23) coefficientsy, = n, = n. = 0; s =t = —1. Triple iterated integration with (DAGS)?, for
target relative integration error tolerancelof '°. Extrapolation real values (double precision) are given= 1/b,.

by c_o c_q co

16 -0.1649247432e-03  -0.902352425e-03  -0.33055285e-02
24  -0.1625429760e-03  -0.988096045e-03  -0.23147133e-02
32 -0.1626021617e-03  -0.984544906e-03  -0.23904710e-02
48 -0.1626016138e-03  -0.984595309e-03  -0.23887178e-02
64  -0.1626016266e-03  -0.984593520e-03  -0.23888151e-02
96 -0.1626016260e-03  -0.984593638e-03  -0.23888055e-02
128 -0.1626016260e-03  -0.984593640e-03  -0.23888053e-02
Ex:  -0.1626016260e-03  -0.984593636e-03  -0.23888058e-02

Table 3. IR box Eqgn. (23) coefficientsy, = n, = n. = 0; s = 123, ¢t = —200. Triple iterated integration with (DAGS)?,
for target relative integration error tolerant& °. Extrapolation real values (double precision) are given:= 1/by.

integrated withe = 0. The time incurred in the triple integrations dominates titaltcomputation time.
The computation to produce Table 2 takes about 13s (useutxedime) on a MacBook Pro laptop
(Intel Core Duo processor, 3.06 GHz).

The integrand denominator of the box function in Egn. (22)iskaes in the interior of the integration
region fors = 123, ¢ = —200; thus a double extrapolation is required. However, in thiecthe triangle
function denominator in Eqgn. (8) does not vanish in the ioteof the integration domain. Results for
the real parts of the coefficients in (23) are given in TabldBe computation for Table 3 takes about
406s.

5. Concluding remarks

A double regularization is required and implemented bydauble extrapolation, to deal with singular
integrand behavior inside the integration domain as wellRaslivergence. We resort to a reduction
and sector decompositions, applied numerically, whereDhect Computation MethodOCM) is
applied on the basic box and triangle levels. Since the ndeithéully numerical, it is viable without
change for various problem types. Many integrals resutideeng the procedure a good candidate
for parallel/distributed implementations. For difficulbXcalculations we are developing a multi-core
parallelization on the (outer) function evaluation levielshe iterated integration procedure.
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