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Abstract. We report results of a new numerical regularization technique for infrared (IR) divergent loop
integrals usingdimensional regularization, where a positive regularization parameterε, satisfying that the
dimensiond = 4 + 2ε, is introduced in the integrand to keep the integral from diverging as long asε > 0.
A sequence of integrals is computed for decreasing values ofε, in order to carry out alinear extrapolation
as ε → 0. Each integral in the sequence is calculated according to the Direct Computation Method (DCM)
to handle (threshold) integrand singularities in the interior of the domain. The technique of this paper
is applied to one-loopN -point functions. In order to simplify the computation of the integrals for small
ε, particularly in the case of a threshold singularity, areduction of the N -point function is performed
numerically to a set of 3-point and 4-point integrals, andDCM is applied to the resulting vertex and box
integrals.

1. Introduction
The integral for ann-dimensionalN -point Feynman diagram withL loops can be represented as

I = (−1)NΓ(N − Ln/2)

∫

∞

0
dNx δ(1 −

N
∑

j=1

xj)
UN−(L+1)n/2

FN−Ln/2
. (1)

Here the functionsF andU are polynomials determined by the topology of the corresponding Feynman
diagram [1]. A mechanism for the evaluation ofinfrared (IR) divergent multi-loop integrals of the
form (1) by sector decomposition and dimensional regularization is given in [2].

We consider the one-loopN -point function, denoted in [3] by

I = In
N = (−1)NΓ(N − n/2)

∫

∞

0
dNx

δ(1 −
∑N

j=1 xj)

(x · S(N) · x/2)N−n/2
(2)

with
S

(N)
kℓ = −(rℓ − rk)

2 + m2
ℓ + m2

k, 1 ≤ k, ℓ ≤ N (3)

whererℓ =
∑ℓ

j=1 pj ; the pj andmj are the external loop momenta and the corresponding particle
masses, respectively. In order to account for IR divergence, the formalism of dimensional regularization
can be applied by setting the dimensionn = 4 + 2ε. The integral in Eqn. (2) then generallydiverges as
ε → 0 (n → 4). It is expanded with respect toε, via sector decompositions of the integration domain
and expansion of the integrand aroundε = 0 in the resulting sector functions.



The expansion coefficients are calculated in [4] using FORM [5], as sums of multivariate integrals
assembled from contributions over the sectors. The coefficients are derived in [6] by expanding the
expressions for the integrals directly, based on properties of hypergeometric and related functions. We
make use of the asymptotic behavior to compute the coefficients numerically by a linear extrapolation.

We construct alinear system of equations, which incorporates values of the integral fordecreasingε in
the right hand side of the system. The linear system is extended by one equation at a time and solved for
the leading coefficients of the Laurent expansion of the integral. This gives rise to an extrapolation asε
tends to zero. The solutions can be obtained by solving the systems directly or by arecursive method [7].
We will make use ofBulirsch [8] type sequences of the formbℓ = 2, 3, 4, 6, 8, 12, 16, 24, . . . , in order to
setε = εℓ = 1/bℓ.

In previous work [9, 10] we applied thedimensional extrapolation to infrared cases where the
integrand denominator does not vanish in the interior of theintegration domain. In [11] we dealt with
vanishing denominators for vertex (triangle) integrals. At present we target one-loopN -point functions
after their reduction to vertex and box integrals accordingto [12, 3], and sector decompositions to
disentangle overlapping singularities along multiple coordinate axes. These will allow for an efficient
numerical computation of integrals which suffer from both threshold singularities inside the domain, and
IR divergence causing singular behavior at the boundaries of the integration region.

All computations are numerical and performed with automatic integration code after reduction and
sector decompositions, as implemented using QUADPACK in [13] for non-IR divergentN -point functions
through the hexagon. The basic vertex and box functions are computed with techniques of theDirect
computation method (DCM) [14, 15, 10]:

• iterated multivariate integration, which uses one-dimensional or low-dimensional integration
techniques repeatedly [14, 16, 17];

• nonlinear extrapolation by theǫ-algorithm [18, 19], to handle singularities inside the domain.

DCM relies on the one-dimensional QUADPACK [20] numerical methods DQAG and DQAGS, which are
deterministic and adaptive. DQAGS also uses a nonlinear extrapolation internally, for treating algebraic
and algebraic-logarithmic integrand singularities.DCM introduces a termiδ with finite δ > 0 in the
integrand denominator, and extrapolates a sequence of integral values for decreasing values ofδ.

It is our goal in this paper to extendDCM to IR divergent integrals which may have threshold
singularities, in particular for the basic triangle and boxelements in the decomposition, by resorting
to adouble extrapolation or regularization (with respect toδ andε) if needed.

In Section 2 we review thereduction and sector decomposition formalism of one-loopN -point
functions into triangles and boxes. Section 3 explains the dimensional extrapolation by solving a linear
system, or by using a recursive method developed for Vandermonde type systems in [7]. The use of the
linear extrapolation is validated by the underlying asymptotic expansions for the vertex and box sub-
problems, which leads to the double extrapolation for IR divergent problems where the denominator also
vanishes in the interior of the integration domain. Numerical results of the procedures are given for
sample problems in Section 4.

2. Reduction overview
Through the reduction formalism applied in [3], then-dimensional hexagon, pentagon and box functions
are expressed in terms ofn-dimensional triangle and (n + 2)-dimensional box functions.

Assumingdet(S) 6= 0,

In
N =

N
∑

k=1

BkIN−1,k + (N − n − 1)
det(G)

det(S)
In+2
N , (4)

whereS is defined by Eqn. (3),G is the Gram matrix,Gkl = 2rlrk, k, ℓ = 1, · · · , N ; and the
reduction coefficientsBk = −

∑N
l=1 S−1

kl can be obtained by solving the system of linear equations



∑N
ℓ=1 SkℓBℓ = −1, k = 1, . . . , N. Infrared singularities emerge through poles in the integral expansions

as a function ofε wheren = 4+2ε. Thus then-dimensionalN -point function is decomposed as a linear
combination ofn-dimensionalN − 1-point functions, and a remainder term which involves a (n + 2)-
dimensionalN -point function. It is noted in [3] that the latter is IR finite, even in the massless case. In
particular, denoting the Mandelstam variablessj = p2

j andsij... = (pi + pj + . . .)2, the IR behavior in

In
4 (s12, s23,s1, s2, s3, s4,m

2
1,m

2
2,m

2
3,m

2
4) = (5)

+ B1I
n
3 (s12, s3, s4,m2,m3,m4) + B2I

n
3 (s23, s4, s1,m3,m4,m1)

+ B3I
n
3 (s12, s1, s2,m4,m1,m2) + B4I

n
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is confined to the triangle integrals.
The integralsIn

3 andIn+2
4 are split into sector functions of the form

In
3 (s1, s2, s3,m

2
1,m

2
2,m

2
3) = −Γ(3 − n/2)

∑

P(1,2,3)

Sn
Tri(s1, s2, s3,m

2
1,m

2
2,m

2
3) (6)

whereP(1,2,3) is the set of the cyclic permutations of(1, 2, 3), and
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The basic triangle and box functions satisfy the integral representations

Sn
Tri(s1, s2, s3,m

2
1,m

2
2,m

2
3) =

∫ 1

0
dt1dt2

(1 + t1 + t2)
3−n

(DTri)3−n/2
(8)

Sn+2
Box (s12, s23, s1, s2, s3, s4,m

2
1,m

2
2,m

2
3,m

2
4) =

∫ 1

0
dt1dt2dt3

(1 + t1 + t2 + t3)
2−n

(DBox)3−n/2
(9)

where the functionsDTri andDBox are quadratics,

DTri =(−s1)t1 + (−s2)t1t2 + (−s3)t2 + (1 + t1 + t2)(t1m
2
1 + t2m

2
2 + m2

3) − i0

DBox =(−s12)t2 + (−s23)t1t3 + (−s1)t1 + (−s2)t1t2 + (−s3)t2t3 + (−s4)t3

+ (1 + t1 + t2 + t3)(t1m
2
1 + t2m

2
2 + t3m

2
3 + m2

4) − i0 (10)

The functions (8) and (9) will be computed with the integration technique ofDCM, and anonlinear
extrapolation will be performed when denominators vanish within the integration region. This
calculation will be carried out for each value ofε needed in thedimensional extrapolation as ε → 0.

3. Linear extrapolation
Consider a functionS(ε) which satisfies anasymptotic expansion

S(ε) ∼ S + a1 ϕ1(ε) + a2 ϕ2(ε) + . . . , as ε → 0,

where the functionsϕj(ε) are known and in decreasing order, in the sense thatlimε→0
ϕj+1(ε)
ϕj(ε)

= 0.



Then for a linear extrapolation we construct a sequenceS(εℓ), ℓ = 0, 1, · · · , and solve linear systems
of the form

a0 + ϕ1(εℓ) a1 + . . . ϕν(εℓ) aν = S(εℓ), ℓ = 0, . . . , ν, (11)

in the unknownsaj , j = 0, · · · , ν, of order (ν + 1) × (ν + 1), for increasing values ofν and for
decreasingεℓ.

This process can be related to the Neville algorithm as follows (see, e.g., [7]). The interpolating
polynomial Pk,d(x) of degreed for a functionf(x) is defined as the polynomial of degreed which
interpolates at the pointsxℓ, so that

Pk,d(xℓ) = f(xℓ), for ℓ = k − d, k − d + 1, · · · , k. (12)

Denoting the polynomial coefficients byc(j)
k,d , the value of the polynomial at a particular pointx,

Pk,d(x) =
d

∑

j=0

c
(j)
k,d xj, (13)

can be calculated recursively with the Neville algorithm, using

Pk,0(x) = f(xk),

Pk,d(x) =
(xk − x)Pk−1,d−1(x) − (xk−d − x)Pk,d−1(x)

xk − xk−d
, d = 1, · · · , k. (14)

Furthermore, by substituting the formulaP
(j)
k,d(0) = c

(j)
k,d j! into Eqn. (14), formulas are obtained for the

coefficients,

c
(0)
k,0 =f(xk),

c
(j)
k,d =

xk c
(j)
k−1,d−1 − xk−d c

(j)
k,d−1 + c

(j−1)
k,d−1 − c

(j−1)
k−1,d−1

xk − xk−d
, (15)

for d = 1, · · · , k and j = 1, · · · , d − 1.

This gives rise to an extrapolation table, where the values for j = 0 andj = d can be included by setting
c
(−1)
k,d = c

(d+1)
k,d = 0. The table allows calculating the coefficients of the interpolating polynomialPk,k(x)

of degreek, coinciding withf(x) at the pointsx = x0, · · · , xk. Note thatf, x andk can play the role
of S, ε andν in Eqn. (11) above, forϕj(ε) = εj . In this case, the system of Eqn. (12) combined with
Eqn. (13), or Eqn. (11) is a Vandermonde type system, and (15)yields an algorithm for its solution.

4. Asymptotics
This section establishes the underlying asymptotic expansions which validate the linear (dimensional)
extrapolation for various classes of vertex and box diagrams, and gives results for sample problems.

4.1. Vertex diagrams
Kurihara [6] derives expansions with respect toε for the tensor integral of the massless one-loop 3-point
integral of rankM ≤ 3,

T
(3)
µ···ν =

∑

k

Ck
µ···νJ

k
3 (p2

1, p
2
2, p

2
3;n

(k)
x n(k)

y ),



with

Jk
3 (p2

1, p
2
2, p

2
3;n

(k)
x , n(k)

y ) =
1

(4π)2
εΓ(−ε)

(4πµ2
R)ε

∫ 1

0
dx

∫ 1−x

0
dy

xn
(k)
x yn

(k)
y

D1−ε
, (16)

D = (p1x − p2y)2 − ρxy − p2
1x − p2

2y − i0,

ρ = p2
3 − (p1 + p2)

2.

In the casep2
1 = p2

2 = 0 andp2
3 6= 0 with nx = ny = 0, (16) gives

J3(0, 0, p
2
3; 0, 0; ε) =

1

(4π)2
εΓ(−ε)

(4πµ2
R)ε

∫ 1

0
dx

∫ 1−x

0
dy

1

(−p2
3xy − i0)1−ε

(17)

whereµR is the renormalization energy scale. Asε → 0, J3 of Eqn. (17) satisfies an expansion of the
form

J3(0, 0, p
2
3; 0, 0; ε) ∼

C−2

ε2
+

C−1

ε
+ C0 + O(ε). (18)

The linear extrapolation method of Section 3 can be applied to the system of Eqn. (11) withS(ε) =
ε2J3(0, 0, p

2
3; 0, 0; ε). We gave numerical results for the coefficientsC−2, C−1 and C0 of Eqn. (18)

in [10].
If, in (16) with p2

1 = p2
2 = 0, p2

3 6= 0, one ofnx andny is zero and the other is not, e.g.,nx = η > 0
andny = 0, then the asymptotic behavior is given by

J3(0, 0, p
2
3; η, 0; ε) ∼

1

(4π)2p2
3

(

C−1

ε
+ C0 + O(ε)

)

, (19)

with coefficients

C−1 =
1

η
, C0 = −

2

η2
+

1

η



log(−p2
3) −

η−1
∑

j=1

1

j



 .

Values for the coefficients obtained in double precision for(generating and solving) the system of
Eqn. (11) withS(ε) = εJ3(0, 0, p

2
3; η, 0; ε) were reported in [10] fornx = η = 2, ny = 0 andp2

3 = 100,
a tolerated relative error of10−13 for (repeated) integration with the QUADPACK program DQAGS, using
a sequence ofε = εℓ = 1

bℓ
, where{bℓ} is a Bulirsch type sequence. The reported integration times

ranged between 0.03s and 0.09s, forbℓ = 12, 16, 24, · · · , 384. The contribution of the times for the
actual extrapolation procedure were found to be negligible. Table 1 lists results for the coefficients of
Eqn. (19) obtained in a quadruple precision run for this problem.

For p2
1 = 0, p2

2 6= 0 and p2
3 6= 0 in Eqn. (16), IR divergence occurs whennx = ny = 0 or

nx 6= 0, ny = 0, leading to

J3(0, p
2
2, p

2
3; η, 0; ε) ∼

1

(4π)2p2
3

(

C−1

ε
+ C0 + O(ε)

)

. (20)

with coefficients given in [6]. Apart from the IR divergence as indicated by theε-dependence in (20), a
singularity may appear inside the integration region through a zero denominator functionD in (16). For
each value ofε in the sequence, the interior singularity can be handled inDCM, by replacingi0 in D by
iδ and performing a nonlinear extrapolation asδ → 0. Results of the double extrapolation procedure are
given in [11] for a diagram withnx = ny = 0 andp2

2 = 40, p2
3 = −100.



bℓ C
−1 C0

12 0.4976817315764365660976698223580 1.3769024472521615918683765304
16 0.5001453140694736901417736134445 1.3030216329875385877494858112
24 0.5000001921131322347567104032762 1.3025651116288535549087530061
32 0.4999999959467322713652940448364 1.3025850791321435704903401609
48 0.4999999999993260163866288358759 1.3025850932043285642085160900
64 0.5000000000000053069685193174512 1.3025850929940632251166716065
96 0.4999999999999999722450728860463 1.3025850929940632251166716065
128 0.5000000000000000001089023336541 1.3025850929940455873126312708
192 0.4999999999999999999997158886319 1.3025850929940456843793808956
256 0.5000000000000000000000005564493 1.3025850929940456840169987640
384 0.4999999999999999999999999992988 1.3025850929940456840179932776
512 0.4999999999999999999999999999980 1.3025850929940456840179914927

Exact : 0.5 1.3025850929940456840179914547

Table 1. IR vertex of Eqn. (19) coefficients,nx = η = 2, ny = 0 andp2
3 = 100. Integration with (DQAGS)2, for target

relative integration error tolerance5 × 10−24. Extrapolated real values (quad. precision) are given;εℓ = 1/bℓ.

4.2. Box diagrams
The IR divergent integralJ4 (p2

1, p
2
2, p

2
3, p

2
4;nx, ny, nz) occurs in the tensor integral of a massless one-

loop box of rankM ≤ 4,

T (4)
µ...ν =

∑

k

Ck
µ...νJ

k
4 (p2

1, p
2
2, p

2
3;n

(k)
x , n(k)

y , n(k)
z )

and is expressed in [6] using dimensional regularization as

Jk
4 (s, t, p2

1, p
2
2, p

2
3, p

2
4;n

(k)
x , n(k)

y , n(k)
z ) =

Γ(2 − ǫ)

(4π)2 (4πµ2
R) ǫ

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

xn
(k)
x yn

(k)
y zn

(k)
z

D2−ǫ

(21)
where

D = −s x z − t y (1 − x − y − z) − p2
1 x y − p2

2 y z − p2
3 z (1 − x − y − z) − p2

4 x (1 − y − z) − i0.

We consider the case wherep2
1 = p2

2 = p2
3 = p2

4 = 0 (all particles on-shell) andnx = ny = nz = 0. The
integral of the formIn

4 in Eqn. (2), is IR divergent, and its asymptotic behavior is captured in

(4π)2 (4πµ2
R) ε

Γ(2 − ε)
J4 (s, t; 0, 0, 0, 0; 0, 0, 0; ε)

=

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

1

(−s x z − t y (1 − x − y − z) − i0)2−ε
, (22)

∼
c−2

ε2
+

c−1

ε
+ c0 + O(ε) (23)

For s = t = −1, the integrand denominator of of Eqn. (22) does not vanish in the interior of the
integration region, so that only the dimensional regularization is performed (δ = 0). Note that, for
example, only one of the Mandelstam variables occurring in the parameter list of the triangle functions
In
3 of Eqn. (5) is -1 and the other two are 0. The same holds for the Mandelstam parameters of the

triangle denominatorSn
Tri in Eqn. (8).

Table 2 gives coefficient values resulting from the numerical reduction according to (4), applied for
N = 4. The linear (Bulirsch type) extrapolation sequence is started atε = 1/8. Thus the first (3 × 3)
system is solved atε = 1/16. The requested accuracy was set to about 10 digits for the triple integration
of the (n + 2)-dimensional box function in Eqn. (5), whereas the triangle integrations were performed to
a tolerated error of about 12 digits. Note that the (n + 2)-dimensional box function is IR finite; thus it is



bℓ c
−2 c

−1 c0
16 3.97866911577 4.741597564 -20.3973583
24 4.00113602366 3.932788880 -11.0511246
32 3.99996917536 4.002799778 -12.5446904
48 4.00000076575 3.999893462 -12.4436012
64 3.99999998946 4.000002142 -12.4495134
128 3.99999999980 4.000000034 -12.4493421

Exact: 4.0 4.0 -12.4493407

Table 2. IR box of Eqn. (23) coefficients,nx = ny = nz = 0; s = t = −1. Triple iterated integration with (DQAGS)3, for
target relative integration error tolerance of10−10. Extrapolation real values (double precision) are given;εℓ = 1/bℓ.

bℓ c
−2 c

−1 c0
16 -0.1649247432e-03 -0.902352425e-03 -0.33055285e-02
24 -0.1625429760e-03 -0.988096045e-03 -0.23147133e-02
32 -0.1626021617e-03 -0.984544906e-03 -0.23904710e-02
48 -0.1626016138e-03 -0.984595309e-03 -0.23887178e-02
64 -0.1626016266e-03 -0.984593520e-03 -0.23888151e-02
96 -0.1626016260e-03 -0.984593638e-03 -0.23888055e-02
128 -0.1626016260e-03 -0.984593640e-03 -0.23888053e-02
Ex: -0.1626016260e-03 -0.984593636e-03 -0.23888058e-02

Table 3. IR box Eqn. (23) coefficients,nx = ny = nz = 0; s = 123, t = −200. Triple iterated integration with (DQAGS)3,
for target relative integration error tolerance10−9. Extrapolation real values (double precision) are given;εℓ = 1/bℓ.

integrated withε = 0. The time incurred in the triple integrations dominates the total computation time.
The computation to produce Table 2 takes about 13s (user execution time) on a MacBook Pro laptop
(Intel Core Duo processor, 3.06 GHz).

The integrand denominator of the box function in Eqn. (22) vanishes in the interior of the integration
region fors = 123, t = −200; thus a double extrapolation is required. However, in this case, the triangle
function denominator in Eqn. (8) does not vanish in the interior of the integration domain. Results for
the real parts of the coefficients in (23) are given in Table 3.The computation for Table 3 takes about
406s.

5. Concluding remarks
A double regularization is required and implemented by adouble extrapolation, to deal with singular
integrand behavior inside the integration domain as well asIR divergence. We resort to a reduction
and sector decompositions, applied numerically, where theDirect Computation Method (DCM) is
applied on the basic box and triangle levels. Since the method is fully numerical, it is viable without
change for various problem types. Many integrals result, rendering the procedure a good candidate
for parallel/distributed implementations. For difficult box calculations we are developing a multi-core
parallelization on the (outer) function evaluation levelsin the iterated integration procedure.
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