

The PROOF benchmark suite measuring PROOF

performance

S Ryu
1

KISTI, 245 Daehak-ro Yuseong-gu, Daejeon 305-806, Korea

E-mail: sangsuryu@kisti.re.kr

G Ganis

CERN, Geneva, Switzerland

E-mail: Gerardo.Ganis@cern.ch

Abstract. The PROOF benchmark suite is a new utility suite of PROOF to measure

performance and scalability. The primary goal of the benchmark suite is to determine optimal

configuration parameters for a set of machines to be used as PROOF cluster. The suite

measures the performance of the cluster for a set of standard tasks as a function of the number

of effective processes. Cluster administrators can use the suite to measure the performance of

the cluster and find optimal configuration parameters. PROOF developers can also utilize the

suite to help them measure, identify problems and improve their software. In this paper, the

new tool is explained in detail and use cases are presented to illustrate the new tool.

1. Introduction

The Parallel ROOT Facility, PROOF, is an extension of the ROOT system [1] aimed at speeding-up

analysis using multiple ROOT processes in parallel on a cluster of computers or a multi-core computer

[2, 3].

PROOF implements multi-process parallelism to address specifically typical analysis problems

encountered in HEP, which in most cases are either embarrassingly parallel or can be formulated as

such. For systems like PROOF, scalability with respect to available resources is a natural metric of the

efficiency of architecture design and implementation. The inherent scalability of a well-designed and

efficient parallel system should be close-to-linear, with minimum overhead. When relevant, external

factors, like the available I/O bandwidth, may change this picture [4]. Spotting, identifying and

understanding departures of system scalability from linearity are important steps in system

optimization process, and essential for any further improvement.

The new PROOF benchmark suite is a new module built into PROOF, providing a standard way to

measure the scalability of PROOF system as a function of active processes in the cluster. It is a simple,

easy to use, yet flexible enough tool with full support for user-specific customization.

2. PROOF benchmark suite

The new benchmark suite is a framework to perform scalability measurements on a PROOF cluster in

1
 Contact author

a standard way. The primary goal of the new benchmark suite is to determine optimal configuration

parameters for a set of machines to be used as PROOF cluster. The suite measures the performance of

the cluster for a set of standard tasks as a function of the number of effective processes. From these

results, indications about the optimal working point of the cluster – e.g. the maximum or optimal

number of concurrent processes - should be derived. For large facilities, where a multi-tier architecture

with a super-master supervising multiple sub-masters may help improve scalability and merging

performance, the suite should also give indications about the optimal number of sub-masters into

which the cluster should be partitioned.

 The new suite should be beneficial to PROOF site administrators who wish to check their

installation, find bottlenecks, and optimize configuration parameters. PROOF developers will find the

suite useful in understanding and improving PROOF.

2.1. Design requirements

The new benchmark has been designed to be easy to use and flexible. This means that defaults are

meaningful for most typical cases and straightforward to run, with only few or no settings from the

user. At the same time the suite allows users to benchmark user-specific or experiment-specific cases,

requiring dedicated datasets, selectors and software packages.

2.2. Analysis modes with PROOF

Typical analysis tasks in HEP application can be categorized into two types – cycle-driven analysis

and data-driven analysis. Cycle-driven analysis work is typically CPU-intensive but it could also be

I/O, network, or RAM intensive; generation of Monte Carlo events is a good example. For data-driven

analysis, the unit of process is entries of a TTree fetched from distributed files. The analysis task reads

in events from real data files from experiment or data files generated from simulation. This type of

analysis task is typically disk I/O intensive but it could also be network, RAM, or CPU intensive. The

new suite addresses both types of analysis tasks.

2.3. Key components

The suite consists of a set of client-side classes, of which essential classes are a steering class for user

interface and a set of selectors for default tasks.

2.3.1. Steering class. TProofBench is a user interface class for the benchmark of the system. With the

interface, the user makes a connection to PROOF cluster, prepares an output file for results of the test,

uploads relevant selectors as PAR files [2], runs benchmark, and displays results. For typical use, this

is the only class relevant to the user of the suite.

2.3.2. Selectors. The suite provides one default selector for each of analysis task types. TSelHist is a

default selector class to be used for cycle-driven task and class TSelEvent for data-driven analysis task.

These classes are uploaded to the cluster as PAR files at the beginning stage of benchmarking. The

selector TSelHist intensively generates random numbers following normal distribution to fill 1-D, 2-D,

or 3-D histograms, which will be merged at PROOF master and returned to client. 3-D histogram can

be used to study the impact of merging large outputs on the scalability of the system. The selector

TSelEvent reads in test events from files, which have been generated through TProofBench user

interface class prior to benchmark, and fills in histogram with information from events read.

2.4. Modes of scan

To obtain the scalability of the system, the suite repeatedly performs measurements while enabling a

certain number of additional workers at each step. In worker-scan mode, with default parameters, scan

starts with one active worker, enabling another worker at each step until all available workers in the

cluster are active. In core scan mode, with default parameters, measurement starts with one active

worker on every node in the cluster, enabling additional worker on every node simultaneously at each

step, until all available workers on nodes are active. The order workers are activated is determined by

system configuration on master node. User can change how many active workers to start with, how

many workers to activate each step, and the number of active workers to finish scanning at. With

worker scan mode, overall behaviour of the system can be investigated, while core-scan mode is more

effective for the investigation of the behaviour of the system inside a node. To minimize the statistical

fluctuation of measurement and maximize measurement accuracy, measurements are repeated (four

times, by default) for each step of the scan. For data-driven mode, file caches on worker nodes are

cleaned after each measurement.

2.5. Generation of data files

For default data-driven benchmark, files with events should be generated on worker nodes, which can

be done with user interface class TProofBench. The events are of type Event of ROOT
2
. Default is to

generate two files with 30,000 events each for every worker in the system. All relevant parameters are

configurable by user.

2.6. Output of benchmark

For cycle-driven test, average event rate (number of events processed on all active workers in unit

time) and its RMS are calculated at each measurement point. For data-driven test, average I/O rate

(MB read in on all active workers in unit time) and its RMS are calculated for each measurement point

as well as average event rate and its spread. Event rate and I/O rate are plotted on display as a function

of the number of active workers in the cluster and updated as progress is made, as well as saved to

output files. Normalized event rate and normalized I/O rate (event rate and I/O rate divided by the

number of active workers in the cluster, respectively) are also displayed to supplement the

interpretation of system behaviour. Packet information from each active worker in the cluster such as

CPU time, process time, and latency is saved to an output file for possible further investigation after

the benchmark has finished.

2.7. Availability and documentation

The new benchmark suite is available from ROOT v5.29 and on. As it is a client-side module, it can

be imported into previous ROOT versions. Additional documentation is available online at

http://root.cern.ch/drupal/content/new-benchmark-framework-tproofbench.

3. Use cases

To illustrate the tool, some example results obtained from runs on PROOF facilities for ALICE

experiment [4, 5] and on a cloud facility are shown. PROOF facilities that were used are summarized

in table 1. All benchmark runs were performed with default parameters, if not stated otherwise.

Table 1. PROOF facilities used for use case study.

 ALICE CAF KIAF PoD on Frankfurt cloud

Nodes 1 master, 58 workers 1 master, 4 worker 50

CPU 2 / node, 4 cores/CPU

(Intel Xeon L5520,

 2.27 GHz)

 2 / node, 6 cores/CPU

(Intel Xeon X5650,

 2.67 GHz)

 2 / node, 12 cores / CPU

(AMD Opteron 6172,

 2.1 GHz)

RAM 24 GB / node 24 GB / node 64 GB / node

Storage Local SATA disks 5 TB/node (NAS)

300 GB/node (SAS)

 -

2
 See the files test/Event.h and test/Event.C in any ROOT installation.

3.1. Cycle-driven benchmark on a homogeneous cluster

Figure 1 shows an example result of cycle-driven benchmark with default configuration on KIAF

which is a homogeneous ALICE PROOF cluster. Total event rate divided by the number of active

workers in the cluster as shown in figure 2 provides closer view on the scaling of the system.

Figure 1. Event rate from a cycle-driven

benchmark on KIAF.

 Figure 2. Events rate normalized by number

of active workers from a cycle-driven

benchmark on KIAF.

3.2. Cycle-driven benchmark on ALICE PROOF facility

Cycle-driven benchmark results on ALICE PROOF facility CAF [5] are shown in figure 3 and figure 4.

The facility is currently actively utilized for analysis tasks by ALICE collaboration. The facility

consists of 3 groups of computers with different performance, formed over time by adding new

computers to existing cluster. The plots clearly show transition between the groups.

Figure 3. Event rate from a cycle-driven

benchmark on ALICE CAF. Transition from

one type of computers to another is clearly

shown.

 Figure 4. Normalized event rate from a

cycle-driven benchmark on ALICE CAF.

3.3. Cycle-driven benchmark on PoD PROOF cluster

Figure 5 shows a cycle-driven benchmark result on PoD [6] cluster where PROOF cluster is

dynamically set up on Frankfurt cloud facility [7]. We can see here that the system scales almost

linearly up to around 300 workers, where the impact of the serial implementation of packet

distribution by master becomes visible.

3.4. Data-driven benchmark of two storage systems on ALICE KIAF

Figure 6 shows results from a data-driven benchmark with test events on ALICE KIAF cluster [5].

KIAF had 2 storage systems available on the system – local SAS disks on every node and a NAS

storage system mounted to all worker nodes via network. At 4~5 active workers per node, rate starts to

saturate to the value representing the total amount of I/O that the device can provide [4]. The new

benchmark suite is very effective in benchmarking and comparing performance of different hardware

with PROOF.

Figure 5. Event rate from a cycle-driven test

on POD cluster on cloud system.

Measurements were made for every 50

workers. Courtesy of A Manafov at GSI,

Darmstadt.

 Figure 6. I/O rate from a data-driven

benchmark on KIAF cluster. This is core

scan result. Square points are with local SAS

disks on every worker node, triangular points

with a NAS system mounted to every worker

node via network.

4. Conclusions

PROOF benchmark suite is a new module in PROOF system, which is easy to use, yet flexible enough

to support user-specific or experiment-specific requirements. The new suite will help site

administrator check their installation and optimize its configuration parameters. PROOF software

developers can use the suite to spot, identify problems, and improve their software. The suite has been

available from ROOT version 5.29/02 and on.

References

[1] Brun R and Rademakers F ROOT - an object oriented data analysis framework Proc.

AIHENP ’96 Workshop (Lausanne, Switzerland, September 1996) 1997 Nucl. Instr. and

Meth. A 389 81 See also http://root.cern.ch

[2] Ballintijn M, Brun R, Rademakers F and Roland G The PROOF distributed parallel analysis

framework based on ROOT Proc. CHEP03 Workshop (La Jolla, California, US, March

2003) http://arxiv.org/abs/physics/0306110

[3] Ballintihn M, Brun R, Canal P, Gulbrandsen K, Roland G and Rademakers F 2004 Super

scaling PROOF to very large clusters Proc. CHEP04 Workshop (Interlaken, Switzerland , 27

September – 01 October 2004)

[4] Aguado-Sanchez C, Blomer J, Buncic P, Charalampidis I, Ganis G, Nabozny M and

Fademarkers F 2010 Studying ROOT I/O performance with PROOF-Lite Proc. CHEP 2010

Workshop (Taipei, Taiwan , 11-22 October 2010)

[5] ALICE experiment http://aliweb.cern.ch

[6] ALICE analysis facilities http://aaf.cern.ch

[7] Malzacher P and Manafov A 2010 PROOF on Demand J. Phys.: Conf. Ser. 219 072009

[8] http://www.frankfurt-cloud.com/

Acknowledgements

The authors gratefully acknowledge KIAF administrators at KISTI, Daejeon for PROOF facility and

their support, A. Manafov at GSI, Darmstadt for the benchmark plots for PoD cluster on cloud system,

and ALICE collaboration for ALICE PROOF facility.

