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Abstract. Most classification algorithms used in high energy physics fall under the category
of supervised machine learning. Such methods require a training set containing both signal
and background events and are prone to classification errors should this training data be
systematically inaccurate for example due to the assumed MC model. To complement such
model-dependent searches, we propose an algorithm based on semi-supervised anomaly detection
techniques, which does not require a MC training sample for the signal data. We first model the
background using a multivariate Gaussian mixture model. We then search for deviations from
this model by fitting to the observations a mixture of the background model and a number
of additional Gaussians. This allows us to perform pattern recognition of any anomalous
excess over the background. We show by a comparison to neural network classifiers that such
an approach is a lot more robust against misspecification of the signal MC than supervised
classification. In cases where there is an unexpected signal, a neural network might fail to
correctly identify it, while anomaly detection does not suffer from such a limitation. On the
other hand, when there are no systematic errors in the training data, both methods perform
comparably.

1. Introduction
Machine learning techniques have been extensively used in high energy physics data analysis
over the past few decades [1]. Especially supervised, multivariate classification algorithms, such
as neural networks and boosted decision trees, have become commonplace in state-of-the-art
physics analyses and have proven to be invaluable tools in increasing the signal-to-background
ratio in searches of tiny signals of new physics. Such methods work under the assumption that
there exists labeled data sets of signal and background events which can be used to train the
classification algorithm. These training samples are usually obtained from Monte Carlo (MC)
simulation of the new physics process and the corresponding Standard Model background.

Supervised machine learning algorithms are the tools of model-dependent new physics
searches. In the beginning of the analysis, one decides to focus on a particular variant of a
certain new physics model. This could be for example a certain SUSY parametrization. Events
corresponding to this choice are then generated using a MC generator followed by training
of a classification algorithm to optimize the yield of such events. In the best case scenario,
applying this classifier to real observed data would produce a statistically significant excess over
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Figure 1. Demonstration of the limitations of model-dependent searches of new physics. When
a neural network is trained with the data of the left figure, the classification decision boundary
is given by the black curve. But if the training data is systematically inaccurate, a new physics
signal could be completely missed in the analysis. For example all the observations of the right
figure would be classified as background.

the Standard Model background and result in a discovery of new beyond the Standard Model
physics.

Unfortunately, this process could go wrong on several different levels. Firstly, there are no
guarantees that nature actually obeys any of the existing theoretical new physics models. The
solution to the existing problems with the Standard Model could be something that no one
has even thought of yet. Even if one of the existing theories is the right way forward, such
models often have a large amount of free parameters. Exploring the whole high-dimensional
parameter space one combination of values at a time could be a very laborious, time-consuming
and error-prone process. Lastly, MC simulation of such processes often requires simplifications
and approximations and could be a major source of systematic errors in its own right.

This kind of uncertainties and systematic errors are not well-tolerated by supervised
classification algorithms. Figure 1 illustrates the problem. When a neural network was trained
using the signal and background data of Figure 1a, we obtained the black decision boundary
to separate signal events from background. But what if due to one of the above mentioned
problems, the real new physics signal looked like the one in Figure 1b? The algorithm trained
with wrong type of training patterns would completely miss such a signal. The signal events
would all be regarded as background even though the data clearly contains a signature of an
interesting anomalous process.

While it is possible to alleviate this type of problems up to some extent by tweaking the
training data and the classification algorithm of the supervised classifier, a more principled
solution is provided by performing the new physics search in a model-independent mode where,
instead of trying to provide an experimental validation of a particular beyond the Standard
Model physics model, one is simply looking for deviations from known Standard Model physics.
The goal of model-independent new physics searches is to be sensitive to any deviations from
known physics, whether or not they are described by one of the existing theoretical models. This
kind of ideas have been put forward both at the Tevatron and at the LHC. For example, at the
CDF experiment, a combination of algorithms called Vista and Sleuth were used to perform a
global model-independent search of new physics with early Tevatron Run II data [2], while an
algorithm called MUSiC is currently being used to scan the data of the CMS experiment at the
LHC for such deviations [3].



In this paper, we present an alternative algorithm for model-independent searches of new
physics based on semi-supervised anomaly detection techniques. As opposed to existing methods,
our aim is not only to detect deviations from known Standard Model physics in a model-
independent manner but also to produce a model for the observations which can be used to
further analyze the properties of the potential new physics signal. Our method is also inherently
multivariate and binning-free, while the existing methods are based on exploiting the properties
of one-dimensional histograms.

2. Semi-supervised detection of collective anomalies
2.1. Motivation
Our data analysis problem can be formulated as follows: given a labeled sample of known physics
expected to be seen in the experiment and the empirical observations, how can we find out if
there is a previously unknown contribution among the measurements and, if there is, how can
we study its properties? In statistics, such a problem is solved using semi-supervised anomaly
detection algorithms [4]. These are algorithms designed to look for deviations from a labeled
sample of normal data. The neural network based background encapsulator [5] of the trigger of
the H1 experiment at HERA can, for instance, be regarded as an example of such an algorithm.

Unfortunately, existing semi-supervised anomaly detection algorithms can rarely be directly
applied to solve the model-independent search problem. This is because they are designed to
classify observations as anomalies should they fall in regions of the data space where there is a
small density of normal observations. The problem is that in many theoretical models the excess
of events corresponding to the new physics signal appears among the bulk of the background
distribution instead of the tail regions considered by standard anomaly detection algorithms.
We solve the problem by exploiting the fact that if there is a new physics signal, it should occur
as a collection of several events which, only when considered together, constitute an anomalous
deviation from the Standard Model.

2.2. Fixed-background model for anomaly detection
We start by fitting a parametric density estimate pB(x) to a labeled background sample. This
density estimate, which we call the background model, serves as a reference of normal data.
We conduct a search for collective deviations from the background model by fitting to the
observations a mixture of pB(x) and an additional anomaly model pA(x):

pFB(x) = (1− λ)pB(x) + λpA(x). (1)

We call this mixture model the fixed-background model to emphasize that when modeling the
observations, pB(x) is kept fixed which allows pA(x) to capture any unmodeled anomalous
contributions in the data. Fitting of both pB(x) and pFB(x) to the data is done by maximizing
the likelihood of the model parameters.

Pattern recognition of the anomalies with the fixed-background model enables a variety of
data analysis tasks:

(i) Classification: Observations can be classified as anomalies using the posterior probability
as a discriminant function

p(anomaly|x) =
λpA(x)

(1− λ)pB(x) + λpA(x)
=: D(x). (2)

An observation x is then classified as an anomaly if D(x) ≥ T for some threshold T ∈ [0, 1].

(ii) Proportion of anomalies: The mixing proportion of the anomaly model λ directly gives us
an estimate for the proportion of anomalies in the observations. This could be further used
to derive a cross section estimate for the anomalous physics process.
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Figure 2. (a) A histogram of background data from a univariate Gaussian distribution and
an estimated background model pB(x). (b) An illustration of the fixed-background model in
a univariate case. The histogram shows the unlabeled observations (the gray excess in the
histogram denotes the anomalous contribution). The estimated fixed-background model pFB(x)
is shown with a black line and the anomaly model pA(x) with a gray line.

(iii) Statistical significance: The statistical significance of the anomaly model can be estimated
by performing a statistical test for the background-only null hypothesis λ = 0 using the
likelihood ratio test statistic Λ [6]. This enables us to discriminate between statistical
fluctuations of the background and real anomalous processes. Following [7], we obtain the
distribution of the test statistic using nonparametric bootstrapping. That is, we sample
with replacement observations from the background data, fit pFB(x) to this new sample
and compute the corresponding value of Λ. This allows us to recover the distribution of
Λ under the background-only null hypothesis and hence to compute the significance of the
observed collective anomaly.

As a simple illustration of the fixed-background model, Figure 2a shows a univariate data set
of background data generated from a Gaussian distribution and a maximum likelihood Gaussian
density pB(x) estimated using the data set. Figure 2b shows a very simple anomalous pattern
that can be modeled with a single additional univariate Gaussian. Given a sample contaminated
with these anomalies, our goal is to find an optimal combination of the parameters of the anomaly
model (µA, σ2A) and the mixing proportion λ. The resulting model pFB(x) is shown with a black
line and the anomaly model pA(x) with a gray line in Figure 2b.

2.3. Algorithmic details
We model all the densities in Equation (1) using a multivariate Gaussian mixture model [8]

p(x|θ) =

J∑
j=1

πjN (x|µj ,Σj). (3)

Here J is the number of Gaussian components in the model. The components have means µj

and covariances Σj , while πj are the mixing proportions which satisfy
∑

j πj = 1.
Fitting a Gaussian mixture model with J components to the background sample by

maximizing its log-likelihood is a standard problem in computational statistics and can be
carried out using the iterative expectation-maximization (EM) algorithm [9]. The algorithm
proceeds in two steps. In the expectation step (E-step), we compute the posterior probabilities
for each data point xi to have been generated by the jth Gaussian component

p(zij = 1|xi,θ
k) =

πkjN (xi|µk
j ,Σ

k
j )∑J

j′=1 π
k
j′N (xi|µk

j′Σ
k
j′)

=: γkij . (4)



Here, θk contains the parameter estimates at the kth iteration and zi indicates which component
generated the ith observation. In the subsequent maximization step (M-step), the parameter
values are updated according to the following equations:

πk+1
j =

1

N

N∑
i=1

γkij , µk+1
j =

∑N
i=1 γ

k
ijxi∑N

i=1 γ
k
ij

, Σk+1
j =

∑N
i=1 γ

k
ij(xi − µk+1

j )(xi − µk+1
j )T∑N

i=1 γ
k
ij

. (5)

The algorithm alternates between these two steps until the log-likelihood is not improving
anymore. This gives us an estimate of the background model pB(x).

The next step of the anomaly detection algorithm is to fit to the unlabeled observations
the fixed-background model (1) where the anomaly model is a Gaussian mixture model with Q
components. When we keep the background model fixed, the free parameters of the full model
are the parameters of the anomalous Gaussians, their mixing proportions and the global mixing
proportion λ and we seek to find such values of these parameter that their log-likelihood is
maximized. This can be done easily by noting that as a mixture of two Gaussian mixtures, the
fixed-background model itself is a Gaussian mixture with J +Q components. Hence, we can use
the same EM update equations as above to update the free parameters of the model and simply
skip the updates of the fixed parameters. The complete update equations based on this idea can
be found in the technical report [10], where we also describe a number of heuristics implemented
in the algorithm to overcome the issues related to choosing the model complexities J and Q.

3. Demonstration: Search for the Higgs boson
We demonstrate the application potential of the proposed anomaly detection framework by using
a data set from the Higgs boson analysis at the CDF detector. It should be stressed that the
results presented here should not be regarded as a realistic Higgs analysis. Instead, the goal is
to merely demonstrate the performance and the potential benefits of the proposed algorithm.

3.1. Description of the data set
We consider a data set produced by the CDF collaboration [11] containing background events
and MC simulated Higgs events where the Higgs is produced in association with the W boson and
decays into two bottom quarks, qq̄ → WH → lνbb̄. In the data space, this signal looks slightly
different for different Higgs masses mH. The goal is to show that semi-supervised anomaly
detection is able to identify such a signal without a priori knowledge of mH. More generally,
this could be any set of free parameters in the new physics theory under consideration.

Each observation in the data set corresponds to a single simulated collision event in the
CDF detector at the Tevatron proton-antiproton collider. We follow the event selection and
choice of variables described in [11] for double SECVTX tagged collision events. We also
consider an additional neural network based flavor separator from [12], giving us a total of 8
variables to describe each event. To facilitate density estimation and visualization of the results,
the dimensionality of the logarithmically normalized data was reduced to 2 using principal
component analysis (PCA) [13].

We used 3406 data points to train the background model which was then used to detect
signals of 400 data points for masses mH = 100, 115, 135, 150 GeV among another sample of
3406 observations of background data. Hence, the unlabeled sample contained 10.5 % of signal
events. In reality, the expected signal is roughly 5 to 50 times weaker than this, but due
to the limited number of background events available, the signal had to be amplified for this
demonstration. Based on experiments with artificial toy data reported in [10], we expect to be
able to detect signals which contribute only a few percent to the unlabeled sample when we have
two orders of magnitude larger background statistics.
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Figure 3. (a) A projection of the WH background data into its two-dimensional principal
subspace. The solid lines show contours of the estimated 5-component Gaussian mixture model
for the background. (b) A projection of the mH = 150 GeV test data set into the two-
dimensional principal subspace. The solid lines show contours of the estimated 2-component
Gaussian mixture model for the signal.

3.2. Modeling the Higgs data
We used the cross-validation-based information criterion (CVIC) [14] to select a suitable number
of components J for the background model. When a 5-fold cross-validation was performed, the
evaluation log-likelihood was maximized with J = 5. Figure 3a shows contours of the resulting
five-component background model in the two-dimensional principal subspace.

We then learned the fixed-background models for the signals with different masses starting
with Q = 3 anomalous components. The algorithm converged with one anomalous component
for mH = 100 GeV and two components for the rest of the masses. The resulting anomaly model
for mH = 150 GeV is shown in Figure 3b.

3.3. Anomaly detection results
The statistical significances of the anomaly models were evaluated using the bootstrap technique
with 50 000 resamplings. The significances, starting from the lowest mass, were 1.8σ, 2.8σ, 3.1σ
and 3.3σ. Hence, in our toy analysis, all the signals would have been significant enough to draw
closer attention.

Figure 4a shows the receiver operating characteristic (ROC) curves for anomaly detection
with different Higgs masses. One can see that regardless of the mass of the Higgs, the algorithm
is able to identify the signal with a relatively constant accuracy. The classification results are
slightly better with the higher masses because the high-mass signal lies on a region of the data
space with a lower background density. Starting from the lowest mass, the estimated anomaly
proportions are λ = 0.100, 0.121, 0.118, 0.122, which are all in agreement with the correct
proportion of 0.105.

We also trained a supervised MLP neural network for each of the mass points to act as an
“optimal” reference classifier and compared the ROC curves to the ones obtained with anomaly
detection. Figure 4b shows the ROC curves for a neural network trained with the 150 GeV
signal and tested with all the mass points. When the neural network was tested and trained
with the same mass, the ROC curve was comparable to anomaly detection, which shows that
the proposed model-independent framework is able to achieve similar performance as model-
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(a) Anomaly detection for the WH data
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Figure 4. (a) ROC curves for the WH data with different Higgs massesmH with semi-supervised
anomaly detection. The method is able to identify the signal without a priori knowledge of the
mass. (b) ROC curves for the WH data for a neural network classifier trained with the 150 GeV
signal. The neural network is able to efficiently identify only the signal it has been trained for.

dependent supervised classification. However, when the neural network was tested with a mass
different from its training mass, its performance started to decline. For example the 150 GeV
neural network would be likely to miss the 100 GeV signal. On the other hand, anomaly detection
is able to successfully identify the signal regardless of the mass. In other words, this experiment
shows that supervised classifiers are able to efficiently identify only the signals they have been
trained for with potentially severe consequences, while model-independent approaches, such as
semi-supervised anomaly detection, do not suffer from such a limitation.

4. Discussion
The semi-supervised anomaly detection algorithm could be used to scan the measurements for
new physics signals by focusing on some particular final state which is thought to be especially
sensitive to new physics. One could then use the framework to look for deviations from the
expected Standard Model background in this final state. If a statistically significant anomaly is
found, one could use the fixed-background model to study its properties. Since the anomalous
events are likely to lie within the bulk of the background, the best way to reconstruct their
properties would be a soft classification based approach [15] where the contribution of a single
event to some physical observable is weighted by the posterior class probability of the event.
Reconstructing a number of physical spectra for the anomaly should allow one to produce a
physics interpretation for the observed deviation. It is likely that most observed anomalies
correspond detector effects and background mismodeling. If this is determined to be the case,
new cuts could be introduced to isolate such regions or the background estimate could be
corrected to account for the anomaly. The analysis could then be repeated iteratively until
all anomalies are understood. If at some stage we encounter a significant anomaly which cannot
be explained by just adjusting the background estimate, it could be a sign of new physics and
should be studied further to see if there is a plausible new physics interpretation for it.

The computational experiments of this paper were carried out using well-understood standard
techniques from computational statistics in order to convey the basic idea of semi-supervised
anomaly detection as clearly as possible. It is likely that some of the shortcomings of the



algorithm could be alleviated by using more advanced computational tools. One of the obvious
limitations of the algorithm is the curse of dimensionality. With a reasonable sample size, the
algorithm seems to perform relatively well up to three dimensions, but beyond that, the number
of observations required to estimate the parameters of the Gaussian mixture models becomes
prohibitively large. We demonstrated with the Higgs example that one possible way of solving
the problem is dimensionality reduction with PCA or some other dimensionality reduction
algorithm. Another possibility would be to consider parsimonious Gaussian mixture models,
where the number of parameters is reduced by constraining the structure of the covariance
matrices [16]. The current algorithm is also only able to handle anomalies which manifest
themselves as an excess over the background. That is, a deficit with respect to the background
estimate is not treated properly, although it might be possible to circumvent this restriction by
allowing λ to take negative values.

5. Conclusions
We presented a novel and self-consistent framework for model-independent searches of new
physics based on a semi-supervised anomaly detection algorithm. We showed using a Higgs
boson data set that the method can be successfully applied to searches of new physics and
demonstrated the potential benefits of the approach with respect to conventional analyses.
To make sure that no new physics signals have been missed by the current model-dependent
searches, it would be important to complement them by scanning the collision data with model-
independent techniques, one example of which is the proposed anomaly detection framework.
We hope that the work presented here helps to revive interest in such techniques among the
HEP community by showing that model-independent new physics searches can be conducted in
a feasible and practical manner.
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