Elementary example of exact effective-Hamiltonian computation

Stanisław D. Głazek
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw

An exact computation of effective Hamiltonians in an elementary model akin to quantum field theory is carried out by solving equations of the renormalization group procedure for effective particles (RGPEP) [1]. The computation exhibits the mechanism by which the weak-coupling expansion and Tamm-Dancoff approximation increase in accuracy along the RGPEP evolution. The model computational pattern can be followed in perturbative computations of effective Hamiltonians in realistic theories.
[1] SDG, Phys. Rev. D 103, 014021 (2021).

Motivation

- goal: presenting a universal method for computing effective Hamiltonians in QFT
- method: renormalization group procedure for effective particles (RGPEP)
- result: Tamm-Dancoff and PT increase in accuracy along the RGPEP evolution

Model computation exhibits the RGPEP method without clutter.

Derivation of the model

$$
\begin{gathered}
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} \mu^{2} \phi^{2}-g \bar{\psi} \phi \psi \\
\mathcal{L} \rightarrow \mathcal{T}^{\mu \nu} \rightarrow \mathcal{H}=\mathcal{T}^{+-} \rightarrow H=\int_{F} \mathcal{H} \rightarrow \hat{H}=\int_{F}: \mathcal{H}(\hat{\psi}, \hat{\phi}): \\
m \gg \mu \gg \Delta
\end{gathered}
$$

Canonical Yukawa theory Hamiltonian

$$
\begin{gathered}
H_{F F}=H_{f}+H_{b}+H_{f b}+[\text { other terms }] \\
p^{ \pm}=p^{0} \pm p^{3} \quad p^{2}=p^{+} p^{-}-p^{\perp 2}=m^{2} \quad p^{-}=\left(m^{2}+p^{\perp 2}\right) / p^{+} \\
H_{f}=\sum_{\sigma} \int[p] \frac{m^{2}+p^{\perp 2}}{p^{+}} b_{p \sigma}^{\dagger} b_{p \sigma} \quad H_{b}=\int[p] \frac{\mu^{2}+p^{\perp 2}}{p^{+}} a_{p}^{\dagger} a_{p} \\
H_{f b}=g \sum_{\sigma_{1}, \sigma_{2}} \int\left[p_{1} p_{2} p_{3}\right] \delta_{c . a} \bar{u}_{1} \Gamma u_{2} b_{p_{1} \sigma_{1}}^{\dagger}\left(a_{p_{3}}^{\dagger}+a_{p_{3}}\right) b_{p_{2} \sigma_{2}}+\ldots \\
\int[p]=\int d^{4} p \delta\left(p^{2}-m^{2}\right) \theta\left(p^{+}\right) \quad \rightarrow \quad \int[p] \theta(\Delta-|\vec{p}|)
\end{gathered}
$$

Model simplifications

fermion mass $m \gg \Delta \quad \rightarrow \quad$ one fermion and many bosons
boson mass $\mu \gg \Delta \quad \rightarrow \quad$ boson-fermion relative motion $|\vec{k}| \ll \Delta \ll \mu$ small $-\vec{k}$ boson states replaced by one, static mode with $E_{b}=\mu$
$\bar{u}_{1} u_{2} \rightarrow 2 m \quad$ etc.
Model Hamiltonian $\quad H_{F F}=H_{f}+H_{b}+H_{f b} \quad+$ [other terms]

$$
\begin{aligned}
& \rightarrow \quad H_{\text {model }}=E_{f} b^{\dagger} b+E_{b} a^{\dagger} a+g E_{I} b^{\dagger}\left(a^{\dagger}+a\right) b \\
& \quad\left\{b, b^{\dagger}\right\}=1, \quad\left[a, a^{\dagger}\right]=1 \quad \text { etc. } \quad \text { (many ways to solve) }
\end{aligned}
$$

The RGPEP equation

introduce $t=s^{2}$, a scale parameter, $s \sim$ size of effective quanta, $[s] \sim 1 / E$

$$
b_{t}=\mathcal{U}_{t} b \mathcal{U}_{t}^{\dagger} \quad a_{t}=\mathcal{U}_{t} a \mathcal{U}_{t}^{\dagger} \quad \text { etc. }
$$

$b=b_{0}, a=a_{0}$ etc. $\quad 0=t=s^{2} \leftrightarrow$ point-like quanta of canonical Yukawa theory b_{t}, a_{t} etc. $\quad 0<t=s^{2} \leftrightarrow$ the effective quanta

$$
H_{\text {model }}=E_{f} b^{\dagger} b+E_{b} a^{\dagger} a+g E_{I} b^{\dagger}\left(a^{\dagger}+a\right) b=H_{t}=\sum_{k, l, m, n=0}^{\infty} C_{t}^{k l m n} b_{t}^{\dagger k} b_{t}^{l} a_{t}^{\dagger m} a_{t}^{n}
$$

$$
\frac{d}{d t} \mathcal{H}_{t}=\left[\left[H_{f}+H_{b}, \mathcal{H}_{t}\right], \mathcal{H}_{t}\right] \quad \text { and } C_{0}^{1100}=E_{f}, C_{0}^{0011}=E_{b}, C_{0}^{1110}=C_{0}^{1101}=g E_{I}
$$

Solution of the RGPEP equation in the model

$$
\begin{gathered}
H_{\mathrm{model}}=E_{f} b^{\dagger} b \quad+E_{b} a^{\dagger} a+g E_{I} b^{\dagger}\left(a^{\dagger}+a\right) b \\
H_{t}=\left(E_{f}+g_{t}^{2} \Delta_{t}\right) b_{t}^{\dagger} b_{t}+E_{b} a_{t}^{\dagger} a_{t}+g_{t} E_{I} b_{t}^{\dagger}\left(a_{t}^{\dagger}+a_{t}\right) b_{t} \\
a_{t}=a+c_{t} b^{\dagger} b \quad b_{t}=e^{c_{t}\left(a^{\dagger}-a\right)} b \\
g_{t}=g e^{-E_{b}^{2} t} \quad \Delta_{t}=\left(1-e^{2 E_{b}^{2} t}\right) E_{I}^{2} / E_{b}
\end{gathered}
$$

spectral decomposition at $t \rightarrow \infty$

$$
H_{\infty}=E_{\text {fermion }} b_{\infty}^{\dagger} b_{\infty}+E_{b} a_{\infty}^{\dagger} a_{\infty}
$$

$$
\begin{array}{lrl}
E_{\text {fermion }}=\lim _{t \rightarrow \infty}\left(E_{f}+g_{t}^{2} \Delta_{t}\right) & E_{n \text { bosons }} & =n E_{b} \\
E_{\text {fermion }+n \text { bosons }}=E_{\text {fermion }}+n E_{b} & g_{\infty} & =0
\end{array}
$$

$$
\begin{aligned}
& \left.\mid \text { fermion }\rangle=b_{\infty}^{\dagger}|0\rangle \quad \mid n \text { bosons }\right\rangle=\frac{1}{\sqrt{n!}} a_{\infty}^{\dagger n}|0\rangle \\
& \mid \text { fermion }+n \text { bosons }\rangle=\frac{1}{\sqrt{n!}} a_{\infty}^{\dagger n} b_{\infty}^{\dagger}|0\rangle \\
& b_{\infty}^{\dagger}=e^{-g\left(E_{I} / E_{b}\right)\left(a^{\dagger}-a\right)} b^{\dagger} \quad \quad a_{\infty}^{\dagger}=a^{\dagger}+g\left(E_{I} / E_{b}\right) b^{\dagger} b
\end{aligned}
$$

Weak-coupling expansion power series in g_{t}

$$
g_{t}=g e^{-E_{b}^{2} t}
$$

example of expansion

$$
\begin{gathered}
\mid \text { fermion }\rangle=N\left[b_{t}^{\dagger}|0\rangle-\frac{1}{E_{b}} g_{t} E_{I} a_{t}^{\dagger} b_{t}^{\dagger}|0\rangle+\frac{1}{2}\left(\frac{1}{E_{b}} g_{t} E_{I}\right)^{2} a_{t}^{\dagger} a_{t}^{\dagger} b_{t}^{\dagger}|0\rangle\right]+O\left(g_{t}^{3}\right) \\
\lim _{t \rightarrow \infty} g_{t}=0
\end{gathered}
$$

Accelerated convergence for growing size of effective particles

$$
g_{t}=g e^{-t\left(E_{f+b}-E_{f}\right)^{2}} \rightarrow g e^{-t^{2}\left(\mathcal{M}_{f+b}^{2}-m_{f}^{2}\right)^{2}}
$$

Tamm-Dancoff approximation limit the number of Fock components

$$
\begin{gathered}
\left.\mid \text { fermion }_{\mathrm{TD}}\right\rangle=x_{t 0} b_{t}^{\dagger}|0\rangle+x_{t 1} a_{t}^{\dagger} b_{t}^{\dagger}|0\rangle+\frac{1}{\sqrt{2}} x_{t 2} a_{t}^{\dagger} b_{t}^{\dagger}|0\rangle \\
\left.\left.H_{T D} \mid \text { fermion }_{\mathrm{TD}}\right\rangle=E_{T D} \mid \text { fermion }_{\mathrm{TD}}\right\rangle
\end{gathered}
$$

How many effective bosons are needed?

$$
\left.\left\langle N_{t}\right\rangle=\langle\text { fermion }| a_{t}^{\dagger} a_{t} \mid \text { fermion }\right\rangle=g_{t}^{2}=g_{t_{0}}^{2} e^{2 E_{b}^{2}\left(t_{0}-t\right)}
$$

$g_{t_{0}}$ corresponds to effective bosons of size $s_{0}=\sqrt{t_{0}}=1 / E_{b}$, examples with $E_{I}=E_{b}$

$$
\begin{array}{lll}
g_{t_{0}}=1 / 2 & g_{t_{0}}^{2}=1 / 4 & \alpha \Upsilon \sim 1 / 4 \\
g_{t_{0}}=1 & g_{t_{0}}^{2}=1 & \text { convergence radius for geometric series in } g_{0} \\
g_{t_{0}}=2 & g_{t_{0}}^{2}=4 & \text { potentially non-perturbative dynamics }
\end{array}
$$

Accuracy of the weak-coupling and Tamm-Dancoff approximations

Concluding remarks concerning QFT

thanks to María Gómez-Rocha, Kamil Serafin, Sebastian Dawid, Jai More

1. Some terms in $H_{\text {eff }}$ order g^{2} and g^{3} are known in QED and QCD AF
2. 4th-order terms are only known in models
two loops
3. Phenomenology of heavy-quarkonia (QCD + gluon mass) oscillator potential
4. Regularization and the vacuum problem (small x)

$$
p^{+}>\epsilon^{+}
$$

5. Poincaré symmetry, quantum mechanics and QFT

Light Cone 2021, Jeju, South Korea, November 29, 2021

$$
\mathcal{U}_{t}^{\dagger}=1+\left[e^{c_{t}\left(a^{\dagger}-a\right)}-1\right] b^{\dagger} b
$$

$$
\begin{gathered}
\left.\mid \text { fermion }_{\mathrm{TD}}\right\rangle=x_{t 0} b_{t}^{\dagger}|0\rangle+x_{t 1} a_{t}^{\dagger} b_{t}^{\dagger}|0\rangle+\frac{1}{\sqrt{2}} x_{t 2} a_{t}^{\dagger 2} b_{t}^{\dagger}|0\rangle \\
\left.\left.H_{T D} \mid \text { fermion }_{\mathrm{TD}}\right\rangle=E_{T D} \mid \text { fermion }_{\mathrm{TD}}\right\rangle \\
{\left[\begin{array}{ccc}
h_{2,2} & h_{2,1} & 0 \\
h_{1,2} & h_{1,1} & h_{1,0} \\
0 & h_{0,1} & h_{0,0}
\end{array}\right]\left[\begin{array}{c}
x_{t 2} \\
x_{t 1} \\
x_{t 0}
\end{array}\right]=E_{\mathrm{TD}}\left[\begin{array}{c}
x_{t 2} \\
x_{t 1} \\
x_{t 0}
\end{array}\right]} \\
h_{m, n}=\frac{1}{\sqrt{m!n!}}\langle 0| b_{t} a_{t}^{m} H_{t} a_{t}^{\dagger n} b_{t}^{\dagger}|0\rangle \\
E_{T D}=E_{f}+g_{t}^{2} \Delta_{t}+x E_{b} \quad \Rightarrow \quad(2-x)(1-x) x+\alpha_{t}(2-3 x)=0 \\
x=n+\alpha_{t} y \quad E_{T D n}=E_{\text {fermion }}+n E_{B} \quad \alpha_{t}=\left(g_{t} E_{I} / E_{b}\right)^{2}
\end{gathered}
$$

