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1 INFINITE MOMENTUM FRAME

In 1966 Weinberg (Phys. Rev. 150, 1313 (1966)) showed that instant-time quantization perturbation theory

would be simplified in the frame in which an observer moved with an infinite three-momentum with respect

to the center of mass system of a scattering process, i.e., p3 = αP where P is large and α is a constant and

p0 = [(p3)2 + (p1)2 + (p2)2 + m2]1/2 → αP + [(p1)2 + (p2)2 + m2]/2αP .

180 I'E YNMAN RULES AT INFI Ni TE MOMENTUM

A. New Rules

l.et us introduce the new variables g, s, and q defined
by

~=p'+p', s=p' p'—, «=(p', p'), (2.1)

where p& is the four-momentum of a single particle.
These new variables play an essential role in our new
rules.
Our new rules are simply the usuat Feynman rules

written in terms of the new variables (s,rt, q). The prop-
agator has the form G=ih~,

1'xo. 1. (a) and (b) Second-
order self-energy in two difer-
ent r orderings. (c) Lowest-
order vacuum diagram. v axis
points upward.

tip
plp

p+p

G(p) =i(rts q'—m—'+ie) ', (2.2)

since p"p„=r)s—q' The momentum-space integral expression for M(s) above Eq. (30) of Ref. 3, i.e.,
becomes 1

d p=a d q d'gds. (2.3) -'g'(27r) ' d'q dcrt sn(1—rr) —q'—m'+isa ' (2.8)
0

The energy-momentum conservation at each vertex
becomes the conservation of s, q, and q.
Although the new rules are identical to the old ones

except for a 45' rotation of the p' and p' axes, they make
the practical calculation very different. As a simple
example, consider the self-energy diagram shown in
Fig. 1(a).Taking p= (s,rt, 0), we have

Z(p) =i,' ( ig-)'(—2m-) ' d'q'drt'ds'G(p')G(p'+p) . (2.4)

Using (2.2), the s' integral is

——1
Pr)'(rt+r)') j ' ds' s'—(m'+q" —ie)

where n= —g'. Equation (2.8) is derived in Ref. 3 to
illustrate the advantage of the diagram rules based on
the old-fashioned perturbation theory with all particles
having infinite momenta. The variable n, which is
shown in Ref. 3 to be just the Feynman parameter of
combining denominators, may now be related directly
to r)=p'+p'. It seems a bit surprising that a simple
change of variables has the advantage, which the
infinite-momentum rules of Ref. 3 has, of bypassing some
complicated steps of combining denominators. In the
following few paragraphs, we shall show that our new
rules are already the rules at infinite momentum in the
sense that the rules derived in Ref. 3, plus some correc-
tions, follow immediately from our rules without taking
any limit of the form p' ~ eo.

——1
X s+s'——(m'+q" —ie) . (2.5)

n+~'

Suppose z&0. Clearly, if p') 0, both of the poles of the
integrand are below the real axis, and the integral
therefore vanishes. For q'& —g, both poles are above
the real axis, and the integral again vanishes. It is
nonvanishing only when

0&—~'&~, (2.6)

Xgrt'(rt+r)')s+r)(q"+m' ie)j ' (2.7—).
If we set g= 1, this expression becomes identical to the

which sets the limits for the g' integration. If g&0, the
same argument leads to 0(rt'( ~rt~. The fact that rt'
has a finite range after the s' integral is an outstanding
feature of the new rules. Performing the s' integration,
one obtains

B. Ordered Diagrams

We define the new time variable 7 conjugate to $ by

r =,' (t+s), -
and the propagator in the v. representation by

G(,n, q) =
dS
G(s ~ q)e rrs 0(~r) ~ ~ ~

—le (ss+mrr)lrls-
27r

for g/0
=—i(m'+q') '8(r), for g=0. (2 9)

Apart, from the case g=0, which will be shown later to
be important only for vacuum diagrams, (2.9) shows
that for rt) 0, G(r,rt, q) is nonzero only when r) 0, and
for &&0, only when v&0. If we call the quantity
(q'+m')/rt in (2.9) the "single-particle energy, " then
(2.9) says that positive-energy states propagate forward
in r and negative-energy states propagate backward.
The latter may also be regarded as an antiparticle
(which is the same as a particle in this case) with
energy (q'+m')/ ~rt ~

propagating forward in r
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Specifically, Graph (b) would be suppressed with respect to Graph (a). Graph (c) was not discussed. In Wein-

berg’s case the x0 time axis runs up the diagram and the analysis was made using old-fashioned perturbation

theory. Old-fashioned (i.e. pre-Feynman) perturbation theory is off the energy shell but on the mass shell.

(The Feynman approach is off the mass shell).
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2 INSTANT-TIME FEYNMAN GRAPHS AND OLD-FASHIONED PERTURBATION

THEORY

In the instant-time case one can take an instant-time forward in time Green’s function such as D(x0 >

0, instant) = −i〈ΩI |θ(x0)φ(x0, x1, x2, x3)φ(0)|ΩI〉 as evaluated in the instant-time vacuum |ΩI〉, and expand

the field in terms of instant-time creation and annihilation operators that create and annihilate particles out

of that vacuum as

φ(x0, ~x) =

∫
d3p

(2π)3/2(2Ep)1/2
[a(~p) exp(−iEpt + i~p · ~x) + a†(~p) exp(+iEpt− i~p · ~x)], (2.1)

where Ep = (~p2 + m2)1/2 and [a(~p), a†(~p ′)] = δ3(~p − ~p ′). The insertion of φ(~x, x0) into D(x0 > 0, instant)

immediately leads to the on-shell three-dimensional integral

D(x0 > 0, instant,Fock) = −iθ(x0)

(2π)3

∫ ∞
−∞

d3p

2Ep
e−iEpx

0+i~p·~x. (2.2)

Alternatively, one can look for solutions to (∂α∂
α + m2)D(xµ, instant) = −δ4(x), and obtain the off-shell

four-dimensional integral

D(xµ, instant) =
1

(2π)4

∫
d4p

e−ip·x

p2 −m2 + iε
=

1

(2π)4

∫
d4p

2Ep
e−ip·x

[
1

p0 − Ep + iε
− 1

p0 + Ep − iε

]
, (2.3)

with the p0 integration being along a contour integral in the complex p0 plane. One can then proceed from

(2.3) to (2.2) by closing the Feynman contour below the real p0 axis, to yield a contour integral in which the

lower-half p0 plane circle at infinity makes no contribution when the instant-time x0 is positive, while the pole

term yields (2.2).
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Similarly, one can proceed from (2.2) to (2.3) by writing the theta function as a contour integral in the

complex ω plane:

θ(x0) = − 1

2πi

∫ ∞
−∞

dω
e−iωx

0

ω + iε
, (2.4)

so that the pole contribution yields θ(x0) = 1 when x0 > 0 and yields θ(x0) = 0 when x0 < 0. With this

representation of the theta function (2.2) takes the form

D(x0 > 0, instant) =
1

(2π)4

∫
d3p

2Ep

∫ ∞
−∞

dω
e−iωx

0

ω + iε
e−iEpx

0+i~p·~x. (2.5)

On setting p0 = ω + Ep, we can rewrite (2.5) as

D(x0 > 0, instant) =
1

(2π)4

∫
d4p

2Ep

e−ip0x
0+i~p·~x

(p0 − Ep + iε)
. (2.6)

We recognize (2.6) as the forward in time, positive frequency component of (2.3), and thus establish the

equivalence of the instant-time off-shell four-dimensional Feynman and on-shell three-dimensional Hamiltonian

(Fock space) formalisms, and see that the equivalence occurs because the four-dimensional Feynman contour

is given by on-shell poles alone. Pole dominance thus leads to old-fashioned perturbation theory.

When x0 = 0 we obtain

θ(0) = − 1

2πi

∮ ∞
−∞

dω
1

ω + iε
= − 1

2πi
[−2πi + πi] =

1

2
, (2.7)

with there being a circle at infinity contribution and not just a pole term. For the instant-time case the
circle contribution is suppressed because there are two powers of p0 in the denominator of D(x0 = 0, instant).
However, in the light front case there is only one power of p+ and the circle does contribute toD(x+ = 0, front).
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3 LIGHT-FRONT VARIABLES

In 1969 Chang and Ma (Phys. Rev. 180, 1506 (1969)) recovered Weinberg’s infinite mo-
mentum frame result by working with the light-front variables p+ = p0 + p3, p− = p0 − p3.
Under a Lorentz boost in the z direction with velocity u these variables transform as

p0 + p3 → (p0 + p3)

(
1 + u

1− u

)1/2

, p0 − p3 → (p0 − p3)

(
1− u
1 + u

)1/2

(3.1)

Setting (1 + u)1/2/(1 − u)1/2 = 1/2P , p3 = αP , for large P and (p0)2 − (p3)2 = p+p− =
m2 + (p1)2 + (p2)2 we obtain

p0 + p3 → 2αP

2P
= α, p0 − p3 → [m2 + (p1)2 + (p2)2]

2αP
2P =

[m2 + (p1)2 + (p2)2]

2α
, (3.2)

i.e., we recover the momenta used by Weinberg. With this choice a Green’s function as
evaluated with a complex plane p+ contour becomes equal to Graph (a) when Graph (a) is
evaluated with a complex plane p0 contour at large p3.

There is a caveat. In the infinite momentum frame case the flow of time is forward in x0,
while the flow of time in the light-front case is forward in x+ = x0 + x3. But for timelike
or lightlike events (x0)2 − (x3)2 = x+x− ≥ (x1)2 + (x2)2 is positive, where x− = x0 − x3.
Thus x+x− is positive. Consequently, x+ and x− have the same sign. And thus for x0 > 0
(a Lorentz invariant for timelike or lightlike events) it follows that x+ is positive too. Thus
for timelike or lightlike events, forward in x+ is the same as forward in x0.
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where n= —g'. Equation (2.8) is derived in Ref. 3 to
illustrate the advantage of the diagram rules based on
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having infinite momenta. The variable n, which is
shown in Ref. 3 to be just the Feynman parameter of
combining denominators, may now be related directly
to r)=p'+p'. It seems a bit surprising that a simple
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infinite-momentum rules of Ref. 3 has, of bypassing some
complicated steps of combining denominators. In the
following few paragraphs, we shall show that our new
rules are already the rules at infinite momentum in the
sense that the rules derived in Ref. 3, plus some correc-
tions, follow immediately from our rules without taking
any limit of the form p' ~ eo.

——1
X s+s'——(m'+q" —ie) . (2.5)

n+~'

Suppose z&0. Clearly, if p') 0, both of the poles of the
integrand are below the real axis, and the integral
therefore vanishes. For q'& —g, both poles are above
the real axis, and the integral again vanishes. It is
nonvanishing only when

0&—~'&~, (2.6)

Xgrt'(rt+r)')s+r)(q"+m' ie)j ' (2.7—).
If we set g= 1, this expression becomes identical to the

which sets the limits for the g' integration. If g&0, the
same argument leads to 0(rt'( ~rt~. The fact that rt'
has a finite range after the s' integral is an outstanding
feature of the new rules. Performing the s' integration,
one obtains

B. Ordered Diagrams

We define the new time variable 7 conjugate to $ by

r =,' (t+s), -
and the propagator in the v. representation by

G(,n, q) =
dS
G(s ~ q)e rrs 0(~r) ~ ~ ~

—le (ss+mrr)lrls-
27r

for g/0
=—i(m'+q') '8(r), for g=0. (2 9)

Apart, from the case g=0, which will be shown later to
be important only for vacuum diagrams, (2.9) shows
that for rt) 0, G(r,rt, q) is nonzero only when r) 0, and
for &&0, only when v&0. If we call the quantity
(q'+m')/rt in (2.9) the "single-particle energy, " then
(2.9) says that positive-energy states propagate forward
in r and negative-energy states propagate backward.
The latter may also be regarded as an antiparticle
(which is the same as a particle in this case) with
energy (q'+m')/ ~rt ~

propagating forward in r
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In their work Chang and Ma showed that

for Graph (a) x+ is positive and all the p− poles have both p− and p+ positive,

for Graph (b) x+ is negative and all the p− poles have both p− and p+ negative,

for Graph (c) x+ is zero and so is p+. But if p+ is zero then p− is infinite. Thus p+ = p−/2 is infinite too,

just as it should be since it is the conjugate of x+. (∆x+∆p+ > ~).

However, and this is the key point, all of these statements are true without going to the infinite

momentum frame. They thus can define a strategy for evaluating diagrams as diagrams are segregated by

the sign of the time variable x+. And since x+ is positive for scattering processes they only involve positive

p− and p+, with the p− pole contributions then corresponding to old-fashioned perturbation theory diagrams.

Only needing positive p− and p+ provides enormous computational benefits.

The vacuum Graph (c) is expressly non-zero, something known as early as 1969. However it involves p+ = 0

zero modes, whose evaluation is tricky. Resolved in Mannheim, Lowdon and Brodsky 2019.

But what about the instant-time graphs that are not at infinite momentum. Are they different from or the
same as the light-front graphs. And if they are different, then which ones describe the real world. In Mannheim,
Lowdon and Brodsky (2019) they were shown to be the same, though developments since 1969 would suggest
that this would be far from the case.
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5 LIGHT-FRONT QUANTUM FIELD THEORY

Instead of replacing instant-time momenta by light-front momenta in Feynman diagrams, we can obtain a

fully-fledged light-front quantum field theory by constructing equal x+ commutators rather than equal x0

commutators. For a scalar field [Neville and Rohrlich, Nuovo Cimento A 1, 625 (1971)]

Scalar field light-front commutators at equal x+

[φ(x+, x1, x2, x−), φ(x+, y1, y2, y−)] = − i
4
ε(x− − y−)δ(x1 − y1)δ(x2 − y2),

[φ(x+, x1, x2, x−), 2∂−φ(x+, y1, y2, y−)] = iδ(x1 − y1)δ(x2 − y2)δ(x− − y−). (5.1)

Scalar field instant-time commutators at equal x0

[φ(x0, x1, x2, x3), ∂0φ(x0, y1, y2, y3)] = iδ(x1 − y1)δ(x2 − y2)δ(x3 − y3),

[φ(x0, x1, x2, x3), φ(x0, y1, y2, y3)] = 0. (5.2)

Gauge field instant-time commutators at equal x0

[Aν(x
0, x1, x2, x3), ∂0Aµ(x0, y1, y2, y3)] = −igµνδ(x1 − y1)δ(x2 − y2)δ(x3 − y3),

[Aν(x
0, x1, x2, x3), Aµ(x0, y1, y2, y3)] = 0. (5.3)

Using gauge fixing, for light-front gauge fields we obtain (Mannheim, Lowdon and Brodsky 2021)

Gauge field light-front commutators at equal x+

[Aν(x
+, x1, x2, x−), 2∂−Aµ(x+, y1, y2, y−)] = −igµνδ(x1 − y1)δ(x2 − y2)δ(x− − y−),

[Aν(x
+, x1, x2, x−), Aµ(x+, y1, y2, y−)] =

i

4
gµνε(x

− − y−)δ(x1 − y1)δ(x2 − y2). (5.4)

Analogous results in the non-Abelian case.
The instant-time and light-front commutators are completely different.
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6 INSTANT-TIME AND LIGHT-FRONT ANTICOMMUTATORS

Fermion instant-time anticommutators at equal x0{
ψα(x0, x1, x2, x3), ψ†β(x0, y1, y2, y3)

}
= δαβδ(x

1 − y1)δ(x2 − y2)δ(x3 − y3). (6.1)

Fermion light-front anticommutators at equal x+{
[ψ(+)]α(x+, x1, x2, x−), [ψ†(+)]β(x+, y1, y2, y−)

}
= Λ+

αβδ(x
− − y−)δ(x1 − y1)δ(x2 − y2). (6.2)

[Chang, Root and Yan, Phys. Rev. D 7, 1133 (1973).]

Non-Invertible Projectors

Λ± = 1
2(1± γ0γ3), Λ+ + Λ− = I, (Λ+)2 = Λ+, (Λ−)2 = Λ−, Λ+Λ− = 0, γ± = γ0 ± γ3, (γ±)2 = 0,

ψ(±) = Λ±ψ, ψ(−) is a constrained variable: (6.3)

ψ(−)(x
+, x1, x2, x−) = − i

4

∫
du−ε(x− − u−)[−iγ0(γ1∂1 + γ2∂2) + mγ0]ψ(+)(x

+, x1, x2, u−).

(6.4){
[ψ(+)]ν(x), [ψ†(−)]σ(y)

}
= i

8ε(x
− − y−)[i(γ−γ1∂x1 + γ−γ2∂x2 )−mγ−]νσδ(x

1 − y1)δ(x2 − y2), (6.5){
ψ(−)
µ (x+, x1, x2, x−), [ψ†(−)]ν(x

+, y1, y2, y−)
}

=
1

16
Λ−µν

[
− ∂

∂x1

∂

∂x1
− ∂

∂x2

∂

∂x2
+ m2

] ∫
du−ε(x− − u−)ε(y− − u−)δ(x1 − y1)δ(x2 − y2). (6.6)

The instant-time and light-front anticommutators are completely different and even not
invertible.
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7 PROPAGATORS AND TIME-ORDERED PRODUCTS

Things get even worse. The x+-ordered product does not always satisfy the field wave
equation with a delta function source (the propagator equation). This is not a problem for
scalar fields, but for fermions we obtain [Yan, Phys. Rev. D 7, 1780 (1973)]

− i〈Ω|[θ(x+)ψβ(xµ)ψ̄α(0)− θ(−x+)ψ̄α(0)ψβ(xµ)]|Ω〉 = i
4γ

+
βαδ(x

+)ε(x−)δ(x1)δ(x2)

+
2

(2π)4

∫ ∞
−∞

dp+dp1dp2dp−

[ e−i(p+x
++p1x

1+p2x
2+p−x−)

γ+p+ + γ−p− + γ1p1 + γ2p2 −m + iε

]
βα
, (7.1)

i.e., a propagator plus a delta function term. This delta function term only contributes at
x+ = 0, and thus can only contribute in vacuum graphs.

For gauge fields quantized in the A+ = 0 axial gauge we have [Harindranath, arXiv:hep-
ph/9612244]

−i〈Ω|[θ(x+)Aµ(x)Aν(0) + θ(−x+)Aν(0)Aµ(x)]|Ω〉

= 2

∫
dp+dp−dp1dp2

(2π)4

e−ip·x

p2 + iε

(
gµν − nµpν + nνpµ

n · p
+

p2

(n · p)2
nµnν

)
, (7.2)

i.e., a propagator plus an nµ-dependent term with only non-zero element n+ = 1. The
nµ-dependent terms are absent in the instant-time case and lead to a zero mode problem at
p+ = 0.
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Fortunately, both of the fermion and gauge field problems are readily fixable. The gauge
field nµ-dependent term does not appear at all if we use gauge fixing. Rather, if one takes
the action to be of the form

IG =

∫
d4x

[
−1

4FµνF
µν − 1

2(∂µA
µ)2
]

=

∫
d4x

[
−1

2∂νAµ∂
νAµ
]
, (7.3)

the x+-ordered product is then nicely given by Dµν(p) = gµν/(p2 + iε) [Mannheim, Lowdon
and Brodsky 2021], just as in the instant-time x0-ordered case. So no zero mode problem.

For fermions we note that because of Lorentz invariance the vacuum graphs have no
external indices, and so the α and β indices in (7.1) must be contracted with δαβ. But γ+ is
traceless, and so the delta function term in (7.1) decouples [Mannheim, Lowdon and Brodsky
2021].

We thus see that the instant-time and light-front propagators (and thus Dyson-Wick ex-
pansions) are identical in form, and only differ from each other by a change of integration
variable from p0, p3 to p+, p− in expressions that are Poincare invariant. Thus unlike in
the infinite momentum frame study, now we can identify the two sets of propagators and
Feynman diagrams at all momenta. The two theories are thus equivalent.

But what about the commutators and anticommutators?
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8 UNEQUAL TIME COMMUTATORS AND ANTICOMMUTATORS

Following Mannheim (2020):

UNEQUAL TIME Scalar instant-time commutator

i∆(x− y) = [φ(x0, x1, x2, x3), φ(y0, y1, y2, y3)]

=

∫
d3pd3q

(2π)3(2p)1/2(2q)1/2

(
[a(~p), a†(~q)]e−ip·x+iq·y + [a†(~p), a(~q)]eip·x−iq·y

)
=

∫
d3p

(2π)32p

(
e−ip·(x−y) − eip·(x−y)

)
= − i

2π

δ(x0 − y0 − |~x− ~y|)− δ(x0 − y0 + |~x− ~y|)
2|~x− ~y|

= − i

2π
ε(x0 − y0)δ[(x0 − y0)2 − (x1 − y1)2 − (x2 − y2)2 − (x3 − y3)2]. (8.1)

Since it holds at ALL times, it also holds at EQUAL light front time.

Substitute x0 = (x+ + x−)/2, x3 = (x+ − x−)/2, y0 = (y+ + y−)/2, y3 = (y+ − y−)/2:

i∆(x− y) = − i

2π
ε[1

2(x+ + x− − y+ − y−)]δ[(x+ − y+)(x− − y−)− (x1 − y1)2 − (x2 − y2)2]. (8.2)

i∆(x− y)
∣∣
x+=y+

= [φ(x+, x1, x2, x−), φ(x+, y1, y2, y−)] = − i
4
ε(x− − y−)δ(x1 − y1)δ(x2 − y2). (8.3)

At x+ = y+ UNEQUAL instant-time commutator is EQUAL light-front time commutator

Light-front quantization is instant-time quantization, and does not need to be indepen-

dently postulated.
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UNEQUAL TIME Abelian gauge field instant-time commutator

[Aν(x
0, x1, x2, x3), Aµ(y0, y1, y2, y3)] = igµν∆(x− y)

= − i

2π
gµνε(x

0 − y0)δ[(x0)2 − (x1)2 − (x2)2 − (x3)2]. (8.4)

Leads to

[Aν(x
+, x1, x2, x−), Aµ(x+, y1, y2, y−)] =

i

4
gµνε(x

− − y−)δ(x1 − y1)δ(x2 − y2). (8.5)

At x+ = y+ UNEQUAL instant-time commutator is EQUAL light-front time commutator

Similar result holds for non-Abelian gauge field.

9 FERMION UNEQUAL INSTANT-TIME ANTICOMMUTATOR

{
ψα(x0, x1, x2, x3), ψ†β(y0, y1, y2, y3)

}
=
[
(iγµγ0∂µ

]
αβ
i∆(x− y). (9.1)

Apply projector and set x+ = y+

Λ+
αγ

{
ψγ(x

+, x1, x2, x−), ψδ(x
+, y1, y2, y−)

}
Λ+
δβ

=
{

[ψ(+)(x
+, x1, x2, x−)]α, [ψ

†
(+)]β(x+, y1, y2, y−)

}
= Λ+

αβδ(x− − y−)δ(x1 − y1)δ(x2 − y2). (9.2)

At x+ = y+ UNEQUAL instant-time anticommutator is EQUAL light-front time anticom-

mutator. Can also derive anticommutators involving bad fermions in the same way.

All cases discussed in Mannheim (2020).
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10 THE TAKEAWAY

Light-front quantization is instant-time quantization, and does not need to
be independently postulated. The seemingly different structure between
EQUAL instant-time and EQUAL light-front time commutators is actually
a consequence of the structure of UNEQUAL instant-time time commuta-
tors and anticommutators as restricted to equal x0 or equal x+.

Now the transformation x+ = x0 + x3, x− = x0 − x3 is not a Lorentz trans-
formation but a translation, i.e., a general coordinate transformation. But
for theories that are Poincare invariant this is a symmetry. Thus:

GENERAL RULE: ANY TWO DIRECTIONS OF QUANTIZATION
THAT CAN BE CONNECTED BY A GENERAL COORDINATE TRANS-
FORMATION DESCRIBE THE SAME THEORY.

BUT IN THE QUANTUM THEORY TRANSLATIONS ARE UNITARY
TRANSFORMATIONS. THUS INSTANT-TIME AND LIGHT-FRONT
THEORIES ARE UNITARILY EQUIVALENT, AND ARE THUS ONE
AND THE SAME THEORY.

13



11 UNITARY EQUIVALENCE VIA TRANSLATION INVARIANCE

So far the discussion has only dealt with free theory commutators, and they just happen to be c-numbers.

However, for interacting theories we can only discuss matrix elements. With

[P̂µ, φ] = −i∂µφ, [P̂µ, P̂ν] = 0 (11.1)

to all orders in perturbation theory because of Poincare invariance, we introduce

U(P̂0, P̂3) = exp(ix3P̂0) exp(ix0P̂3). (11.2)

It effects

Uφ(IT ;x0, x1, x2,−x3)U−1 = φ(IT ;x0 + x3, x1, x2, x0 − x3) = φ(LF ;x+, x1, x2, x−)

(11.3)

Then with a light-front vacuum of the form |ΩF 〉 = U |ΩI〉 we obtain

−i〈ΩI |[φ(IT ;x0, x1, x2,−x3), φ(0)]|ΩI〉 = −i〈ΩI |U †U [φ(IT ;x0, x1, x2,−x3), φ(0)]U †U |ΩI〉
= −i〈ΩF |[φ(LF ;x+, x1, x2, x−), φ(0)]|ΩF 〉, (11.4)

to all orders in perturbation theory. We thus establish the unitary equivalence of matrix elements of instant-time

and light-front commutators to all orders.
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The same equivalence holds for the all-order Lehmann representations. For the instant-time case we have

〈Ω|[φ(IT ;x), φ(IT ; y)]|Ω〉 =
1

(2π)3

∫ ∞
0

dσ2ρ(σ2, IT )

∫
d4qε(q0)δ(q2 − σ2)e−iq·(x−y)

=

∫ ∞
0

dσ2ρ(σ2, IT )i∆(IT, FREE;x− y, σ2), (11.5)

where

ρ(q2, IT )θ(q0) = (2π)3
∑
n

δ4(pnµ − qµ)|〈Ω|φ(0)|pnµ〉|2, P̂µ|pnµ〉 = pnµ|pnµ〉, (11.6)

as written in instant-time momentum eigenstates.

For the light-front case we have

〈Ω|[φ(LF ;x), φ(LF ; y)]|Ω〉 =
2

(2π)3

∫ ∞
0

dσ2ρ(σ2, LF )

∫
d4qε(q+)δ(q2 − σ2)e−iq·(x−y).

=

∫ ∞
0

dσ2ρ(σ2, LF )i∆(LF, FREE;x− y, σ2), (11.7)

where

ρ(qµ, LF ) =
(2π)3

2

∑
n

δ4(pnµ − qµ)|〈Ω|φ(0)|pnµ〉|2 = ρ(q2, LF )θ(q+), (11.8)

as written in light-front momentum eigenstates. Then with

U |pn0〉 = |pn+〉, U |pn3〉 = |pn−〉, U |pn1〉 = |pn1〉, U |pn2〉 = |pn2〉 (11.9)

we obtain the all-order

〈Ω|[φ(IT ;x), φ(IT ; y)]|Ω〉 = 〈Ω|[φ(LF ;x), φ(LF ; y)]|Ω〉. (11.10)
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With the all-order momentum operators having real and complete eigenspectra we have the all-order

P̂µ(IT ) =
∑
|pn(IT )〉pnµ(IT )〈pn(IT )|, P̂µ(LF ) =

∑
|pn(LF )〉pnµ(LF )〈pn(LF )|. (11.11)

With eigenvalues not changing under a unitary transformation, we obtain

P̂0(IT ) = UP̂0(IT )U−1 = U
∑
|pn(IT )〉pn0〈pn(IT )|U †

=
∑
|pn(LF )〉(pn+ + pn−)〈pn(LF )| = P̂+(LF ) + P̂−(LF ). (11.12)

Given (11.11) and (11.12), there initially appears to be a mismatch between the eigenstates of P̂0(IT ) and

P̂+(LF ). However, for any timelike set of instant-time momentum eigenvalues we can Lorentz boost p1, p2

and p3 to zero, to yield

p1 = 0, p2 = 0, p3 = 0, p0 = m. (11.13)

If we impose this same p1 = 0, p2 = 0, p3 = 0 condition on the light-front momentum eigenvalues we would

set p+ = p−, p2 = 4p2
+ = m2, and thus obtain

p1 = 0, p2 = 0, p+ = p−, p0 = 2p+ = m (11.14)

When written in terms of contravariant vectors with pµ = gµνpν this condition takes the form

p0 = p− = m. (11.15)

Thus in the instant-time rest frame the eigenvalues of the contra variant P̂ 0(IT ) and P̂−(LF ) coincide.

In this sense then instant-time and light-front Hamiltonians are equivalent. And non-relativistic in the light-

front case still means p3 = 0, i.e., p+ = p−, and not p− = p+/2 = 0.

Having now established the equivalence of commutators and the equivalence of Hamiltonian operators, we now

proceed to establish the same equivalence for both free and interacting instant-time and light-front Green’s

functions.
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12 INSTANT-TIME AND LIGHT-FRONT FOCK SPACE EXPANSIONS

Instant-Time Scalar Field Fock Space Expansion with E2
p = p2

1 + p2
2 + p2

3 + m2

φ(x0, x1, x2, x3) =
1

(2π)3/2

∫
d3p

(2Ep)1/2
[a(~p)e−iEpt+i~p·~x + a†(~p)e+iEpt−i~p·~x]. (12.1)

Contains −∞ ≤ p3 ≤ ∞, well-behaved at p3 = 0.

Light-Front Scalar Field Fock Space Expansion with F 2
p = (p1)2 + (p2)2 + m2

φ(x+, x1, x2, x−) =
2

(2π)3/2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
(4p−)1/2

×
[
e−i(F

2
p x

+/4p−+p−x−+p1x
1+p2x

2)a(p1, p2, p−) + ei(F
2
p x

+/4p−+p−x−+p1x
1+p2x

2)a†p(p1, p2, p−)

]
. (12.2)

Singular at p− = 0, undefined at x+ = 0, p− = 0. (p− = p+/2, p+ = p−/2).

Contains 0 ≤ p− ≤ ∞ only, Light-Front Hamiltonian approach restricts to p− > 0, p+ <∞.

Thus go beyond Light-Front Hamiltonian if have processes with p− = 0.

This happens in vacuum sector where tadpole is −i〈Ω|φ(0)φ(0)|Ω〉 with x+ = 0.

If bring zero four-momentum into cross in vacuum tadpole then only allowed momentum

in loop has p− = 0. If exclude p− = 0 then tadpole is zero. Potential solution to cosmological

constant problem. Fails since have to deal with indeterminacy of x+/p− at x+ = 0, p− = 0.
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13 EQUIVALENCE OF INSTANT-TIME AND LIGHT-FRONT PROPAGATORS AND

TADPOLES

Construct tadpole as xµ → 0 limit of propagator (not two-point function), i.e., use xµ as a

regulator.

D(xµ) = −i〈Ω|[θ(σ)φ(x)φ(0) + θ(−σ)φ(0)φ(x)]|Ω〉 =
1

(2π)4

∫
d4p

e−ip·x

p2 −m2 + iε
, σ = x0 or σ = x+.(13.1)

D(xµ = 0) = −i〈Ω|φ(0)φ(0)|Ω〉 =
1

(2π)4

∫
d4p

1

p2 −m2 + iε
. (13.2)

D(xµ, instant) =
1

(2π)4

∫
dp0dp1dp2dp3

e−i(p0x
0+p1x

1+p2x
2+p3x

3)

(p0)2 − (p1)2 − (p2)2 − (p3)2 −m2 + iε
,

D(xµ, front) =
2

(2π)4

∫
dp+dp1dp2dp−

e−i(p+x
++p1x

1+p2x
2+p−x−)

4p+p− − (p1)2 − (p2)2 −m2 + iε
,

D(xµ = 0, instant) =
1

(2π)4

∫
dp0dp1dp2dp3

1

(p0)2 − (p1)2 − (p2)2 − (p3)2 −m2 + iε
,

D(xµ = 0, front) =
2

(2π)4

∫
dp+dp1dp2dp−

1

4p+p− − (p1)2 − (p2)2 −m2 + iε
. (13.3)

For all of these Feynman contours there are only poles, except D(xµ = 0, front), for which

the circle at infinity in the complex p+ plane is not suppressed.

18



14 THE NON-VACUUM INSTANT-TIME CASE

In the instant-time case the Feynman integral is readily performed since it is just pole terms and for the

forward D(x0 > 0, instant) = −i〈ΩI |θ(x0)φ(x0, x1, x2, x3)φ(0)|ΩI〉 we obtain

D(x0 > 0, instant) = D(x0 > 0, instant, pole)

= − i

(2π)3

∫ ∞
−∞

d3p

2Ep
e−iEpx

0+i~p·~x =
1

8π

(
m2

x2

)1/2

H
(2)
1 (m(x2)1/2). (14.1)

Insertion of the Fock space expansion for φ(x0, x1, x2, x3) yields

D(x0 > 0, instant, Fock) = − i

(2π)3

∫ ∞
−∞

d3p

2Ep
e−iEpx

0+i~p·~x. (14.2)

We recognize (14.2) as (14.1), to thus establish the equivalence of the instant-time Feynman

and Fock space prescriptions.
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15 THE NON-VACUUM LIGHT-FRONT CASE

In the light-front case poles in the complex p+ plane occur at

p+ = E ′p −
iε

4p−
, E ′p =

(p1)2 + (p2)2 + m2

4p−
. (15.1)

Poles with p− ≥ 0+ thus all lie below the real p+ axis and have positive E ′p, while poles with p− ≤ 0− all lie
above the real p+ axis and have negative E ′p. For x+ > 0, closing the p+ contour below the real axis (which for
x+ > 0 suppresses the circle at infinity contribution) then restricts to poles with E ′p > 0, p− ≥ 0+. However,
in order to evaluate the pole terms one has to deal with the fact that the pole at p− = 0+ has E ′p =∞.
Momentarily exclude the region around p− = 0, and thus only consider poles below the real p+ axis that have p− ≥ δ.
Evaluating the contour integral in the lower half of the complex p+ plane thus gives

D(x+ > 0, front, pole) = − 2i

(2π)3

∫ ∞
δ

dp−
4p−

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2e
−i(E′px++p−x−+p1x1+p2x2)−εx+/4p−

= − 1

4π2x+

∫ ∞
δ

dp−e
−ip−x−+i[(x1)2+(x2)2]p−/x

+−im2x+/4p−−εx+/4p−

= − 1

4π2x+

∫ ∞
δ

dp−e
−ip−x2/x+−im2x+/4p−−εx+/4p−. (15.2)

If we now set α = x+/4p−, we obtain

D(x+ > 0, front, pole) = − 1

16π2

∫ x+/4δ

0

dα

α2
e−ix

2/4α−iαm2−αε. (15.3)

In (15.3) we can now take the limit δ → 0, x+/4δ → ∞ without encountering any ambiguity AS LONG AS x+ IS
NONZERO, and with x+ > 0 thus obtain

D(x+ > 0, front, pole) = − 1

16π2

∫ ∞
0

dα

α2
e−ix

2/4α−iαm2−αε =
1

8π

(
m2

x2

)1/2

H
(2)
1 (m(x2)1/2). (15.4)
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Comparing with (14.1) we see that D(x+ > 0, instant) and D(x+ > 0, front) are equal.
Inserting the Fock space expansion for φ(x+, x1, x2, x−) gives precisely the same result, and thus we obtain

D(x0 > 0, instant) = D(x0 > 0, instant, pole) = D(x0 > 0, instant,Fock)

= D(x+ > 0, front) = D(x+ > 0, front, pole) = D(x+ > 0, front,Fock). (15.5)

General rule: the Feynman and Fock space prescriptions will coincide whenever the only contribution to

Feynman contours is poles. Thus for x+ > 0 the Feynman and Light-Front Hamiltonian approaches coincide.

But what about x+ = 0?
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16 THE INSTANT-TIME VACUUM CASE

In the instant-time case one can readily set xµ to zero, and obtain

D(xµ = 0, instant) =
1

(2π)4

∫
dp0dp1dp2dp3

1

(p0)2 − (p1)2 − (p2)2 − (p3)2 −m2 + iε

= D(xµ = 0, instant, pole) = D(xµ = 0, instant,Fock)

= − i

(2π)3

∫ ∞
−∞

d3p

2Ep
= − 1

16π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (16.1)
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17 THE LIGHT-FRONT VACUUM CASE - POLE AND FOCK SPACE CONTRIBU-

TIONS

In the light-front case we set xµ to zero and evaluate

D(xµ = 0, front) =
2

(2π)4

∫
dp+dp1dp2dp−

1

4p+p− − (p1)2 − (p2)2 −m2 + iε
. (17.1)

Again we need to take care of the p− = 0 region, so we again introduce the δ cutoff at small p−. On closing below the real
p+ axis the only poles are those with p− > 0, and for them we obtain a pole contribution of the form

D(xµ = 0, front, pole) = − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
δ

dp−
4p−

. (17.2)

Then on setting p− = 1/α, we are able to let p− go to zero, to obtain

D(xµ = 0, front, pole) = − i

16π3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ 1/δ

0

dα

α
= − i

16π3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dα

α
. (17.3)

For the Fock space prescription we set xµ = 0 in (12.2), viz.

φ(0) =
2

(2π)3/2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
(4p−)1/2

[ap + a†p], (17.4)

and on inserting φ(0) into −i〈Ω|φ(0)φ(0)]|Ω〉 obtain

D(xµ = 0, front,Fock) = − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
4p−

= D(xµ = 0, front, pole). (17.5)

Comparing with (17.2) we again see the equivalence of the pole and Fock space prescriptions.
However, something is wrong. We are evaluating the m-dependent D(xµ = 0, front) as given in (17.1), and yet we obtain

an answer that does not depend on m at all. What went wrong is that we left out the circle at infinity.
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18 THE LIGHT-FRONT VACUUM CASE - CIRCLE AT INFINITY CONTRIBUTION

To evaluate the circle at infinity contribution we introduce the regulator

1

(A+ iε)
= −i

∫ ∞
0

dαeiα(A+iε). (18.1)

For p− > 0 the regulator converges on the UPPER half circle, and there are no poles at all. We obtain

D(xµ = 0, p− > 0, front, upper circle)

=
2i

(2π)4

∫ ∞
0

dp−

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ π

0

iReiθdθ

∫ ∞
0

dαeiα(4p−Re
iθ−(p1)2−(p2)2−m2+iε)

=
1

8π3

∫ ∞
0

dp−

∫ ∞
0

dα

α
e−iαm

2−αε
∫ π

0

iReiθdθe4iαp−Re
iθ

=
1

8π3

∫ ∞
0

dp−

∫ ∞
0

dα

α
e−iαm

2−αε (e
4iαp−Re

iθ − e−4iαp−Reiθ)
4iαp−

∣∣∣∣π
0

=
1

8π3

∫ ∞
0

dp−

∫ ∞
0

dα

α
e−iαm

2−αε (e
−4iαp−R − e4iαp−R)

4iαp−

= − 1

4π3

∫ ∞
0

dp−

∫ ∞
0

dα

α
e−iαm

2−αε sin(4αp−R)

4αp−
. (18.2)

Then, on letting R go to infinity we obtain

D(xµ = 0, p− > 0, front, upper circle) = − 1

4π2

∫ ∞
0

dp−

∫ ∞
0

dα

α
e−iαm

2−αεδ(4αp−)

= − 1

8π2

∫ ∞
−∞

dp−

∫ ∞
0

dα

α
e−iαm

2−αεδ(4αp−) = − 1

32π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (18.3)

We thus establish the centrality of p− = 0 modes.

Similarly, for p− < 0 close on the LOWER half circle, and again there are no poles. We obtain

D(xµ = 0, p− > 0, front, upper circle) = D(xµ = 0, p− < 0, front, lower circle), (18.4)
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and thus

D(xµ = 0, front) = D(xµ = 0, p− > 0, front, upper circle) +D(xµ = 0, p− < 0, front, lower circle)

= − 1

16π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (18.5)

Now not only is there now an m dependence, we obtain

D(xµ = 0, front) = D(xµ = 0, instant). (18.6)

So again, light-front quantization is instant-time quantization. And even though there is only a circle
at infinity contribution in the light front case, it is this circle at infinity that enables the light-front and
instant-time vacuum graphs to be the same.
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19 RECONCILING THE FOCK SPACE AND FEYNMAN CALCULATIONS

To avoid p− = 0 difficulties we use the regulator on the real p+ axis, and set

D(xµ, front, regulator)

= − 2i

(2π)4

∫ ∞
−∞

dp+

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
−∞

dp−e
−i(p+x++p−x−+p1x1+p2x2)

∫ ∞
0

dαeiα(4p+p−−(p1)
2−(p2)2−m2+iε)

= − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−e
−i(p−x−+p1x1+p2x2)

∫ ∞
0

dαeiα(−(p1)
2−(p2)2−m2+iε)δ(4αp− − x+)

− 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ 0

−∞
dp−e

−i(p−x−+p1x1+p2x2)
∫ ∞
0

dαeiα(−(p1)
2−(p2)2−m2+iε)δ(4αp− − x+). (19.1)

On changing the signs of p−, p1 and p2 in the last integral and setting F 2
p equal to the positive (p1)

2 + (p2)
2 +m2 we obtain

D(xµ, front, regulator)

= − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
4p−

e−i(p−x
−+p1x

1+p2x
2)

∫ ∞
0

dαeix
+(−F 2

p+iε)/4p−δ(α− x+/4p−)

− 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
4p−

ei(p−x
−+p1x

1+p2x
2)

∫ ∞
0

dαeix
+(F 2

p−iε)/4p−δ(α + x+/4p−)

= −2iθ(x+)

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
4p−

e−i(F
2
p x

+/4p−+p−x
−+p1x

1+p2x
2+ix+ε/4p−)

−2iθ(−x+)

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
4p−

ei(F
2
p x

+/4p−+p−x
−+p1x

1+p2x
2−ix+ε/4p−), (19.2)

and note that the structure of (19.2) is such that for x+ > 0 (forward in time) one only has positive energy propaga-
tion, while for x+ < 0 (backward in time) one only has negative energy propagation. With the insertion into D(xµ) =
−i〈Ω|[θ(x+)φ(x)φ(0) + θ(−x+)φ(0)φ(x)]|Ω〉 of the Fock space expansion for φ(xµ) given in (12.2) precisely leading to (19.2),
we recognize (19.2) as the xµ 6= 0 D(xµ, front,Fock).
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Now if we set xµ = 0 in (19.2) we would appear to obtain the m-independent D(xµ = 0, front,Fock) given in (17.5).
However, we cannot take the x+ → 0 limit since the quantity x+/4p− is undefined if p− is zero, and p− = 0 is included in
the integration range. Hence, just as discussed in regard to (15.3), the limit is singular.

To obtain a limit that is not singular we note that we can set xµ to zero in (19.1) as there the limit is well-defined, and
this leads to

D(xµ = 0, front, regulator)

= − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−

∫ ∞
0

dαeiα(−(p1)
2−(p2)2−m2+iε)δ(4αp−)

− 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ 0

−∞
dp−

∫ ∞
0

dαeiα(−(p1)
2−(p2)2−m2+iε)δ(4αp−)

= − 2i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
−∞

dp−

∫ ∞
0

dα

4α
eiα(−(p1)

2−(p2)2−m2+iε)δ(p−), (19.3)

and again see the centrality of p− = 0 modes. If we do the momentum integrations we obtain the m-dependent

D(xµ = 0, front, regulator) = − 1

16π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (19.4)

We recognize (19.4) as being of the same form as the m-dependent D(xµ = 0, front) given in (18.5). We thus have to
conclude that the limit xµ → 0 of (19.2) is not (17.5) but is (19.4) instead, and that

D(xµ = 0, front) = D(xµ = 0, instant) = − 1

16π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (19.5)

Setting p− = 0 and then x+ = 0 is not the same as setting x+ = 0 and then p− = 0.

Thus because of singularities we first have to point split, and when we do so we find that it is the m-dependent
(19.4) that is the correct value for the light-front vacuum graph. And it is equal to the instant-time vacuum
graph.
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20 RELATIVISTIC EIKONALIZATION AND THE LIGHT FRONT

For eikonalization of a light wave one defines Aµ = εµe
iT and takes the eikonal phase to obey

∂µT =
dxµ
dq

= kµ, kµk
µ = 0, (20.1)

where q is an affine parameter that measures distance along the light ray (the normal to the propagating

wavefront). But if we set T =
∫ x
kµdx

µ, we would have T = 0. If momentarily we nonetheless do set

T =
∫ x
kµdx

µ, then for kµ = (k, 0, 0, k) we would have

(∂0 + ∂3)T = 0, (20.2)

which we recognize as a light-front constraint. Now in light-front coordinates we have

kµk
µ = 4k+k− − k2

1 − k2
2, ∂+ =

1

2
(∂0 + ∂3), ∂− =

1

2
(∂0 − ∂3) (20.3)

Now we can be on the light cone if k+ = k1 = k2 = 0, with k− unconstrained. Thus we can now set

T =

∫ x

k−dx
−, (20.4)

a quantity that is non-zero on the light cone. Since T does not depend on x+ it still obeys ∂+T = 0.

The eikonalized ray thus travels on a light-front trajectory and not on an instant-time one. (Mannheim

arXiv:2105.08556 [gr-qc].)
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21 THE MORAL OF THE STORY

When we let p− → 0 we are letting p+ = [(p1)
2 + (p2)

2 +m2]/4p− →∞.

However x+ is the conjugate of p+, and thus as p+ →∞, x+ → 0.

The p− → 0 and the x+ → 0 limits are thus intertwined.

If we stay away from x+ = 0 and restrict to x+ > 0 and thus p− > 0 as in the Light-Front Hamiltonian approach, there is
no difficulty as there are only poles and nothing is singular, with the forward scattering on-shell Light-Front Hamiltonian
approach thus being validated.

However this does become a concern for tadpole graphs as they have x+ = 0, since we need both θ(x+) and θ(−x+)
time orderings in the limit, with 〈Ω|[θ(x+)φ(x)φ(0) + θ(−x+)φ(0)φ(x)]|Ω〉 → 〈Ω|[θ(0+)φ(0)φ(0) + θ(0−)φ(0)φ(0)]|Ω〉 =
〈Ω|φ(0)φ(0)|Ω〉.
If we compare

D(xµ, instant) =
1

(2π)4

∫
dp0dp1dp2dp3

e−i(p0x
0+p1x

1+p2x
2+p3x

3)

(p0)2 − (p1)2 − (p2)2 − (p3)2 −m2 + iε
,

D(xµ, front) =
2

(2π)4

∫
dp+dp1dp2dp−

e−i(p+x
++p1x

1+p2x
2+p−x

−)

4p+p− − (p1)2 − (p2)2 −m2 + iε
, (21.1)

D(xµ = 0, instant) =
1

(2π)4

∫
dp0dp1dp2dp3

1

(p0)2 − (p1)2 − (p2)2 − (p3)2 −m2 + iε
,

D(xµ = 0, front) =
2

(2π)4

∫
dp+dp1dp2dp−

1

4p+p− − (p1)2 − (p2)2 −m2 + iε
, (21.2)

we can transform each instant-time graph into each corresponding light-front graph by a change of variable. Thus they must
be equal. However, that does not mean that pole equals pole or that circle equals circle, only that pole plus circle equals
pole plus circle, as it is only on the full closed contour that the integrals are equal.

The transformation x0 → x0 + x3, x3 → x0 − x3 is a spacetime-dependent general coordinate transformation (not a Lorentz
transformation), and thus by the general coordinate invariance of the fundamental interactions it must be the case that

LIGHT-FRONT QUANTIZATION IS INSTANT-TIME QUANTIZATION, JUST ONE THEORY.
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22 INFINITE MOMENTUM FRAME CONSIDERATIONS

Under a Lorentz boost with velocity u in the 3-direction the contravariant and covariant components of a

general four-vector Aµ transform as

A0 → A0 + uA3

(1− u2)1/2
, A3 → A3 + uA0

(1− u2)1/2
, A0 →

A0 − uA3

(1− u2)1/2
, A3 →

A3 − uA0

(1− u2)1/2
. (22.1)

If we set (1− u) = ε2/2, then with ε small, to leading order we obtain

A0 → A0 + A3

ε
+ O(ε), A3 → A3 + A0

ε
+ O(ε), A0 →

A0 − A3

ε
+ O(ε), A3 →

A3 − A0

ε
+ O(ε),

(A0)2 − (A3)2 = A+A− → A+A−, (22.2)

where A± = A0 ± A3. This leads to

p3 → p+

ε
=

2p−
ε
, Ep →

2p−
ε
,

dp3

Ep
→ dp−

p−
, (22.3)

where Ep = [(p3)2 + (p1)2 + (p2)2 + m])1/2.

On transforming to the infinite momentum frame we obtain

D(xµ = 0, instant,Fock) = D(xµ = 0, instant, pole) = − i

(2π)3

∫ ∞
−∞

d3p

2Ep

→ − i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
2p−

= D(xµ = 0, front,Fock) = D(xµ = 0, front, pole). (22.4)
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D(xµ = 0, instant, pole) = − i

(2π)3

∫ ∞
−∞

d3p

2Ep

→ − i

(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−
2p−

= D(xµ = 0, front, pole) (22.5)

and as such, the infinite momentum frame is doing what it is supposed to do, namely it is transforming an

instant-time on-shell graph into a light-front on-shell graph. However, this is not the correct answer as it does

not depend on m. As we showed in (19.5) the correct answer is the m-dependent

D(xµ = 0, front) = D(xµ = 0, instant) = − 1

16π2

∫ ∞
0

dα

α2
e−iαm

2−αε. (22.6)

Thus in this respect not only is the on-shell prescription failing for light-front vacuum graphs, so is the infinite

momentum frame prescription.

We thus have two puzzles: How could the limit in (22.5) lose its m dependence to begin with if it is a Lorentz

transformation. And second how do we recover the m dependence anyway.

For the first puzzle we note that since the mass-dependent quantity dp3/2Ep is Lorentz invariant, under a

Lorentz transformation with a velocity less than the velocity of light it must transform into itself and thus

must remain mass dependent. However, in the infinite momentum frame it transforms into a quantity dp−/2p−
that is mass independent. This is because velocity less than the velocity of light and velocity equal to the velocity

of light are inequivalent, since an observer that is able to travel at less than the velocity of light is not able to

travel at the velocity of light. Lorentz transformations at the velocity of light are different than those at less

than the velocity of light, and at the velocity of light observers (viz. observers on the light cone) can lose any

trace of mass.
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The resolution to the second puzzle lies in the contribution of the circle at infinity to the Feynman contour. In

the instant-time case the integral ∫
dp0dp3

(p0)2 − (p3)2 − (p1)2 − (p2)2 −m2 + iε
(22.7)

is suppressed on the circle at infinity in the complex p0 plane (p3 being finite), and only poles contribute.

However, when one goes to the infinite momentum frame in the instant-time case dp3 also becomes infinite

(p3 = mv/(1 − v2)1/2) and the circle contribution is no longer suppressed. Specifically, on the instant-time

circle at infinity, the term that is of relevance behaves as∫
Rieiθdθdp3

R2e2iθ − (p3)2
, (22.8)

and on setting ε = 1/R in the infinite momentum frame limit, as per (22.3) the circle term behaves as the

unsuppressed ∫
RieiθdθRdp−
R2e2iθ −R2p2

−
=

∫
ieiθdθdp−
e2iθ − p2

−
. (22.9)

Thus in the instant-time case one cannot ignore the circle at infinity in the infinite momentum frame even

though one can ignore it for observers moving with finite momentum. Consequently, the initial reduction from

the instant-time Feynman diagram to the on-shell instant-time Hamiltonian prescription is not valid in the

infinite momentum frame, and one has to do the full four-dimensional Feynman contour integral instead.
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23 INTERACTIONS

Two c-number approaches: path integrals and Feynman diagrams. Path integrals involve
integrals of classical variables in coordinate space. Feynman diagrams involve integrals of
classical variables in momentum space. For both we can transform from instant-time to
light-front coordinate and momentum variables using general coordinate transformations.
Thus if underlying theory and its renormalization procedure are general coordinate invariant
the equivalence of instant-time and light-front Green’s functions is established.

However, there is a caveat. For Feynman diagrams we need to start out with fully covariant
four-dimensional contour integrals if we want to establish the equivalence. We can obscure
the equivalence if we do the pole integrations in the complex frequency plane first, as then we
would have on-shell three-dimensional integrals. Also we would then have a zero momentum
mode problem. We can avoid this by not doing the frequency integrations until after we
have introduced the exponential regulators.

That the zero mode problem must be avoidable is apparent from the path integral approach
as it is purely in coordinate space and involves no zero momentum modes at all.
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24 MASSIVE FIELDS – SCALAR INSTANT-TIME CASE

i∆(IT ;x− y) = [φ(x0, x1, x2, x3), φ(y0, y1, y2, y3)]

=

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
−∞

dp3
1

(2π)32Ep

(
e−iEp(x

0−y0)+i~p·(~x−~y) − eiEp(x0−y0)−i~p·(~x−~y)
)
. (24.1)

Here p3 ranges from −∞ to ∞ and integrand is well-behaved at p3 = 0.

i∆(IT ; (x− y)2 > 0) =
im

4π
ε(x0 − y0)J1(m[(x− y)2]1/2)

[(x− y)2]1/2
,

i∆(IT ; (x− y)2 = 0) = − i

2π
ε(x0 − y0)δ[(x− y)2],

i∆(IT ; (x− y)2 < 0) = 0. (24.2)

Discontinuous at m = 0, go off shell and write a contour integral in p0 since ε(t) = θ(t) − θ(−t) and δ(t) are distributions
with

θ(t) = − 1

2πi

∮
dω

e−iωt

ω + iε
= − 1

2πi

∫ ∞
−∞

dω
e−iωt

ω + iε
, (24.3)

with t 6= 0 suppressing circle at infinity. As we will see, in t = 0 vacuum case, no suppression. Get θ(0) = 1/2.

i∆(IT ;x− y) = − 1

2πi

1

8π3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
−∞

dp3

∮
dp0

×
[
θ(x0 − y0)e−ip·(x−y) − θ(−x0 + y0)eip·(x−y)

(p0)2 − (p3)2 − (p1)2 − (p2)2 −m2 + iε
+
θ(x0 − y0)eip·(x−y) − θ(−x0 + y0)e−ip·(x−y)

(p0)2 − (p3)2 − (p1)2 − (p2)2 −m2 − iε

]
. (24.4)

Introduce exponential regulator, with the iε term suppressing the α =∞ contribution when A is real∫ ∞
0

dα exp[iα(A+ iε)] = − 1

iA
, (24.5)

Obtain

i∆(IT ;x− y) = − i

4π2
ε(x0 − y0)

∫ ∞
0

dα

4α2

[
e−i(x−y)

2/4α−iαm2−αε + ei(x−y)
2/4α+iαm2−αε

]
. (24.6)
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25 MASSIVE FIELDS – SCALAR LIGHT-FRONT CASE

i∆(LF ;x− y) = [φ(x+, x1, x2, x−), φ(y+, y1, y2, y−)]

=
1

4π3

∫ ∞
−∞

dp1dp2

∫ ∞
0

dp−
4p−

[
e−i[F

2
p (x

+−y+)/4p−+p−(x−−y−)+p1(x1−y1)+p2(x2−y2)] − ei[F 2
p (x

+−y+)/4p−+p−(x−−y−)+p1(x1−y1)+p2(x2−y2)]
]
.

(25.1)

Here p− only ranges from 0 to ∞ and integrand is singular at p− = 0. So put p− into the exponential.

i∆(LF ;x− y) = − 1

2πi

1

4π3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dp−

∮
dp+

×
[
θ(x+ − y+)e−ip·(x−y) − θ(−x+ + y+)eip·(x−y)

4p+p− − (p1)2 − (p2)2 −m2 + iε
+
θ(x+ − y+)eip·(x−y) − θ(−x+ + y+)e−ip·(x−y)

4p+p− − (p1)2 − (p2)2 −m2 − iε

]
= − i

4π2
ε(x+ − y+)

∫ ∞
0

dα

4α2

[
e−i(x−y)

2/4α−iαm2−αε + ei(x−y)
2/4α+iαm2−αε

]
. (25.2)

i∆(LF ; (x− y)2 > 0) =
im

4π
ε(x+ − y+)

J1(m[(x− y)2]1/2)

[(x− y)2]1/2
=
im

4π
ε(x− − y−)

J1(m[(x− y)2]1/2)

[(x− y)2]1/2
,

i∆(LF ; (x− y)2 = 0) = − i

2π
ε(x+ − y+)δ[(x− y)2] = − i

2π
ε(x− − y−)δ[(x− y)2],

i∆(LF ; (x− y)2 < 0) = 0. (25.3)

i∆(LF ;x− y) = − i

4π2
ε(x− − y−)

∫ ∞
0

dα

4α2

[
e−i(x−y)

2/4α−iαm2−αε + ei(x−y)
2/4α+iαm2−αε

]
,

i∆(IT ;x− y) = − i

4π2
ε(x0 − y0)

∫ ∞
0

dα

4α2

[
e−i(x−y)

2/4α−iαm2−αε + ei(x−y)
2/4α+iαm2−αε

]
. (25.4)

Substitute x0 = (x+ +x−)/2, x3 = (x+−x−)/2, y0 = (y+ + y−)/2, y3 = (y+− y−)/2, so that (x− y)2 = (x0− y0)2− (x3−
y3)2− (x1− y1)2− (x2− y2)2 → (x+− y+)(x−− y−)− (x1− y1)2− (x2− y2)2 the instant-time i∆(IT ;x− y) transforms into
the light-front i∆(LF ;x− y). We have thus achieved our main objective, showing that i∆(IT ;x− y) and i∆(LF ;x− y) are
related by a coordinate transformation, and are thus COMPLETELY EQUIVALENT.
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26 MASSIVE FERMION FIELDS

For instant-time case need FOUR-component fermion{
ψα(x0, x1, x2, x3), ψ†β(y0, y1, y2, y3)

}
=
[(
iγ0∂x0 + iγ3∂x3 + iγ1∂x1 + iγ2∂x2 + m

)
γ0
]
αβ
i∆(IT ;x− y). (26.1)

For light-front case again need FOUR-component fermion{
ψα(x+, x1, x2, x−), ψ†β(y+, y1, y2, y−)

}
=
[(
iγ+∂x+ + iγ−∂x− + iγ1∂x1 + iγ2∂x2 + m

)
γ0
]
αβ
i∆(LF ;x− y). (26.2)

Thus can derive unequal light-front time anticommutators from unequal instant-time anti-
commutators. PROVIDED INCLUDE GOOD AND BAD FERMIONS

But what happened to projected fermion anticommutators. We now derive them by project-
ing (26.2).
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{
[ψ(+)]α(x+, x1, x2, x−), [ψ†(+)]β(y+, y1, y2, y−)

}
= 2Λ+

αβi
∂

∂x−
i∆(LF ;x− y), (26.3)

{
[ψ(−)]α(x+, x1, x2, x−), [ψ†(−)]β(y+, y1, y2, y−)

}
= 2Λ−αβi

∂

∂x+
i∆(LF ;x− y). (26.4)

{
[ψ(+)]α(x+, x1, x2, x−), [ψ†(+)]β(x+, y1, y2, y−)

}
= Λ+

αβδ(x− − y−)δ(x1 − y1)δ(x2 − y2).

(26.5){ ∂

∂x−
ψ(−)
α (x+, x1, x2, x−),

∂

∂y−
[ψ†(−)]β(y+, y1, y2, y−)

}
= 2iΛ−αβ

1

4

[
− ∂

∂x1

∂

∂x1
− ∂

∂x2

∂

∂x2
+ m2

]
∂

∂x−
i∆(LF ;x− y). (26.6){ ∂

∂x−
ψ(−)
µ (x+, x1, x2, x−),

∂

∂y−
[ψ†(−)]ν(x

+, y1, y2, y−)
}

=
1

4
Λ−µν

[
− ∂

∂x1

∂

∂x1
− ∂

∂x2

∂

∂x2
+ m2

]
δ(x− − y−)δ(x1 − y1)δ(x2 − y2). (26.7){

[ψ(+)]ν(x), [ψ†(−)]σ(y)
}

= i
8ε(x

− − y−)[i(γ−γ1∂x1 + γ−γ2∂x2 )−mγ−]νσδ(x
1 − y1)δ(x2 − y2), (26.8)
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