Radial excitations in constituent quark model

Ahmad Jafar Arifi

(A. Hosaka, H. Nagahiro, K. Tanida, D. Suenaga) Y. Choi, HC. Choi, CR. Ji, and Y. Oh

Light-cone conference 2021

Contents

Part 1

- Radial excitations of heavy hadrons
- Nonrelativistic quark model [2S]

-> Strong decay

Part 2

Light-front quark model - [1S & 2S]
 -> Mass spectrum & decay constant
 -> Form factor & charge radii

Introduction

• Recent experimental reports

 $\rightarrow \Lambda_b(6072)$: Observation [1, LHCb]

 $\rightarrow \Xi_c(2970): J^P$ determination [2, Belle]

-> *D_s*(2590): Observation [3, LHCb]

• Some analogous states are not identified $-> \Xi(2S), \Xi_b(2S), \text{etc.}$ $-> B_s(2S), \text{etc}$ Finding the missing siblings

3

- Some interesting behaviors
 - -> Similar excitation energy
 - -> Large decay width

[1] LHCb, JHEP 06 (2020) 136
[2] Belle, PRD 103 (2021) L111101
[3] LHCb, PRL 126 (2021) 122002

[2S state] Mass & width

 \Rightarrow Evidence for $1/2^+$.

5

[1] LHCb, JHEP 06 (2020), 136 [2] Arifi et al, PRD 101 (2020), (R) 111502

Problem [Decay width]

 $\sim \Lambda_b(6072) \rightarrow \Gamma = 72 \text{ MeV}$

 \boldsymbol{q}

q

 B_O

[Experimental data]

• Non-relativistic quark model (NRQM)

 B_Q^*

Baryon wave functions [1S and 2S] —> Gaussian type (Harmonic oscillator)

Quark-pion interaction $\mathcal{L}_{\pi q q} = \frac{g_A^q}{2f_\pi} \bar{q} \gamma^\mu \gamma_5 \vec{\tau} q \cdot \partial_\mu \vec{\pi}$ -> axial-vector type.

-> Non-relativistic expansion

Decay amplitude

6

-> A convolution of wave functions

 $\sim \Lambda_b(6072) \rightarrow \Gamma = 5 \text{ MeV} (\text{Very narrow})$

[Quark Model]

Our attempt [Relativistic correction]

Quark-pion interaction

-> Non-relativistic expansion

NR

-> Next-leading order: FWT transformation [1].

$$\mathcal{L}_{\pi q q} = \frac{g_A^q}{2f_\pi} \bar{q} \gamma^\mu \gamma_5 \vec{\tau} q \cdot \partial_\mu \vec{\pi}$$

Relativistic effect

$H = H(1/m^0)$	H(1/m) + H(1/m)	$1/m^2$) +
----------------	-----------------	-------------

(1111)	RC	-	-> Essential			
et	Channel	$\Gamma_{\rm NR}$	$\Gamma_{\rm NR+RC}$	$\Gamma_{\rm Exp}$		
$(1)^+)$ $(1)^+)$ $(1)^-)$	$\Lambda_b \pi$ $\Lambda_b \pi$ $\Sigma_c \pi$	11.9–12.3 20.4–21.4	0.62 - 5.11 1.08 - 8.80 0.001 - 0.003	4.83 ± 0.31 9.34 ± 0.47 < 0.25	~	

State	Multiplet	Channel	$\Gamma_{\rm NR}$	$\Gamma_{\rm NR+RC}$	$\Gamma_{\rm Exp}$	
$rac{\Sigma_b(5810)^+}{\Sigma_b(5830)^+} \ \Lambda_b(5912)^0 \ \Lambda_b(5920)^0 \ \Lambda_b(6072)^0$	$\begin{array}{c} \Sigma_b(1S, 1/2(1)^+) \\ \Sigma_b(1S, 3/2(1)^+) \\ \Lambda_b(1P_{\lambda}, 1/2(1)^-) \\ \Lambda_b(1P_{\lambda}, 3/2(1)^-) \\ \Lambda_b(2S_{\lambda\lambda}, 1/2(0)^+) \end{array}$	$egin{array}{c} \Lambda_b \pi \ \Lambda_b \pi \ \Sigma_b \pi \end{array}$	11.9–12.3 20.4–21.4 0.001–0.003 0.004–0.008 0.72–2.17 1.08–3.00	0.62–5.11 1.08–8.80 0.001–0.003 0.004–0.009 4.97–20.8 7.81–31.5	4.83 ± 0.31 9.34 ± 0.47 < 0.25 < 0.19	~(-) ~(0)
		Sum	1.80–5.17	12.8–52.3	72 ± 11	~(+)

Light-front quark model

-> Fully relativistic model, decay width?

[1] Arifi et al, PRD 103 (2021), 094003

Light-front quark model

Light-front quark model

- Constituent quark model
- Light-front dynamics

Hadrons: $q\bar{q}$, qqq

<> Trial wave function —> Gaussian (H.O. basis).

<> Assume some interactions —> Linear confinement, spin-spin int, etc.

$$\phi_{ns}(x, \mathbf{k}_{\perp}) = \sqrt{\frac{\partial k_z}{\partial x}} \phi_{ns}(k_z, \mathbf{k}_{\perp})$$
$$\phi_{1s} = \frac{1}{\pi^{3/4} \beta^{3/2}} e^{-\mathbf{k}^2/2\beta^2}$$

$$V_{q\bar{q}} = a + br - \frac{4\alpha_s}{3r} + \frac{2}{3} \frac{\mathbf{S}_q \cdot \mathbf{S}_{\bar{q}}}{m_q m_{\bar{q}}} \nabla^2 V_{\text{Coul}}$$

<> Parameters <=> mass spectra
$$M_{q\bar{q}} = \langle \Psi | [H_0 + V_{q\bar{q}}]$$

$$\frac{\partial \left\langle \Psi \right| \left[H_{0} + V_{0} \right] \left| \Psi \right\rangle}{\partial \beta} = 0$$

 $|\Psi
angle$

<> Compute various observables —> decay constant, form factor, decay rate, etc.

9

[1] HM Choi & CR Ji, PLB 460 (1999) 461.

 $\rightarrow \beta$, m, a, b, etc.

Mass spectra [heavy mesons]

<> Input: $\rightarrow \eta_{b}(1S) \& B^{*}(1S)$ \sim The same α_{s} for all. \rightarrow The same β for 2S -> Orthogonality. <> Potential parameters: a = -0.52, b = 0.18, $\alpha_{\rm s}$ = 0.35. <> Quark masses: mq = 0.30, ms = 0.45,mb = 5.0, mc = 1.62 $\langle \rangle \beta$ parameters: -> next slide $\phi_{1s} = \frac{1}{\pi^{3/4}\beta^{3/2}} e^{-\mathbf{k}^2/2\beta^2}$

Decay constants

[1] Becirevic et al, PRD 60 (1999) 074501.[2] Gellhausen et al, EPJC 74 (2014)2979.

Problem [2S decay constant]

- <> Decay constant: f(2S) << f(1S)
- <> If we fit the 2S spectrum,
 - \rightarrow different β
 - -> reproduce the data
 - -> orthogonality?

<> 2S - harmonic oscillator basis —> not a good approximation? —> hydrogen-like wf [1].

$$\operatorname{Exp}\left(-\frac{k^2}{2\beta}\right) \longrightarrow \operatorname{Exp}\left(-\frac{n^{\delta}}{2}\frac{k^2}{\beta}\right)$$

- <> Mixing?
 - -> as a trial wf, we may mix 1S-2S [2],

$$\psi_{2S} = c_1 \phi_{1S} + c_2 \phi_{2S}$$

<> Any other idea?

[1] H.W. Ke et al, PRD 82 (2010) 034023.
[2] M. Li et al, Arxiv:2111.07087 [2021].

Form factors & Charge radii [15]

[1] HM Choi & CR Ji, PRD 19 (2015) 014018 13

Flavor decomposition of FFs

14

• Charge Radii —> light quark has an important role.

[1] U. Can, PLB 719 (2013) 103. [2] Li & Wu, EPJA 53 (2017) 56.

Charge radii [2S]

- Generally, radii of 2S are larger than 1S.
 -> Sensitive to wf.
 -> No lattice data.
- Ratio of 2S/1S radii

 -> Our: ~ 2 (same beta), ~ 3-4 (diff beta)
 -> Other [1]: ~ 4

[1] Y. Li et al. PLB 758 (2016) 118.

Summary

- Several discoveries of radial excitations of hadrons.
 –> Further search of missing states.
- They have some similarities and interesting behaviors.
 -> useful to understand hadron resonances.
- We believe they are standard quark model states, but we still have problems to explain their properties.
 –> e.g.: decay widths and decay constants.
- Further systematic studies of related observables.
 –> provide hints/constraints to their internal structures.
- Comparative studies of non-rel. and rel. quark model
 —> may clarify the role of relativistic effects