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Motivation

The proton light-front wave function gives access to many observables in
momentum space.
For example:

Electromagnetic form factors
The parton distribution function, f1(x1), i.e. probability distribution for a quark having
a momentum fraction. Extracted from inclusive deep inelastic scattering.
Transverse momentum distribution. Dependence on both momentum fraction x and
transverse one~k⊥. Associated with semi-inclusive deeply inelastic scattering (SIDIS).

Additionally, in the double parton scattering cross section enters the double
parton distribution function (DPDF) [1]:

D(x1, x2,~η⊥) =
∞

∑
n=3

Dn(x1, x2,~q⊥) =
∞

∑
n=3

∫ d2k1⊥
(2π)2

d2k2⊥
(2π)2

{
∏

i 6=1,2

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}

×δ

(
1−

n

∑
i=1

xi

)
δ

(
n

∑
i=1

~ki⊥

)
Ψ†

n(x1,~k1⊥ +~η⊥, x2,~k2⊥ −~η⊥, ...)Ψn(x1,~k1⊥, x2,~k2⊥, ...) ,

(1)

The first of Mellin moments of DPDF has recently been calculated within lattice
QCD [2].

[1] B. Blok et al, PRD 83 (2011) 071501 (R).

[2] G. S. Bali, JHEP09 (2021) 106.
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Proton model on the light-front

In this work we consider a dynamical three-body model directly in Minkowski
space, allowing to compute observables on the LF, ultimately including the full BS
amplitude.

As a first step, Fock basis truncated to valence order and spin degree-of-freedom
not included.

The quark-quark transition amplitude has a pole representing the s-wave diquark
introduced through the zero-range interaction between two of the quarks. In that
sense it is an effective low-energy model.
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Three-body Faddeev-Bethe-Salpeter equation with zero interaction

Faddeev-Bethe-Salpeter (FBS) equation with zero-range interaction [1]:

v(q, p) = 2iF (M2
12)
∫ d4k

(2π)4
i

k2 −m2 + iε
i

(p− q− k)2 −m2 + iε
v(k, p) (2)

Currently, bare propagators for the quarks.

v(q, p) is one of the Faddeev components of the total vertex function.

Di-quark concept introduced via assuming a pole in F (M2
12), corresponding

either to a two-body bound (a > 0) or virtual (a < 0) state, where a denotes the
scattering length

F (M2
12), where M2

12 = (p− q)2, given by

F (M2
12) =

Θ(−M2
12)

1
16π2y log 1+y

1−y −
1

16πma

+
Θ(M2

12)Θ(4m2 −M2
12)

1
8π2y′ arctan y′ − 1

16πma
+

Θ(M2
12 − 4m2)

y′′

16π2 log 1+y′′
1−y′′ −

1
16πma −

iy′′
16π

,

(3)

The FBS equation was recently solved including the infinite number of Fock
components in Euclidean [2] and Minkowski [3] space.

[1] T. Frederico, PLB 282 (1992) 409
[2] E. Ydrefors et al, PLB 770 (2017) 131

[3] E. Ydrefors et al, PLB 791 (2019) 276
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Valence LF equation

The valence three-body LF equation given by [1, 2]:

Γ(x, k⊥) =
F (M2

12)

(2π)3

∫ 1−x

0

dx′

x′(1− x− x′)

∫ ∞

0
d2k′⊥

[ 1
M2

0 −M2
N
− 1

M2
0 + µ2

]
Γ(x′, k′⊥) (4)

where µ is a cut-off, k⊥ transverse momentum and x momentum fraction of
spectator. Furthemore, the squared free three-body mass

M2
0 = (k′2⊥ + m2)/x′ + (k2

⊥ + m2)/x + ((k′⊥ + k⊥)2 + m2)/(1− x− x′) (5)

The three-body valence LF wave function is given by

Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥) =
Γ(x1,~k1⊥) + Γ(x2,~k2⊥) + Γ(x3,~k3⊥)√

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))
, (6)

where due to momentum conservation: x3 = 1− x2 − x3 and~k3⊥ = −~k1⊥ −~k2⊥.

[1] J. Carbonell and V.A. Karmanov, PRC 67 (2003) 037001

[2] T. Frederico, PLB 282 (1992) 409
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Results for the vertex function

m [MeV] a [m−1] µ/m µ [MeV] M2 [MeV] MN/m

343 5.0 3.0 1029 668 6.825
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The two parameters, namely a and µ, fitted to reproduce the experimental Dirac
form factor (up to ∼ 1 GeV2).

The proton structure contained in the vertex function Γ(x, k⊥). Concentrated at
small k⊥ and x ≈ 1/3.
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As studied in PLB 770 (2017) 131, it exists a lower-lying unphysical solution with
M2

N < 0. This is the relativistic analog of the well-known Thomas collapse. But,
contrary to the non-relativistic case the unphysical state has a finite energy, due to
a short-range repulsion of purely relativistic origin.

Difference between valence LF result and full BS solution, due to a contribution
coming from an infinite number of diagrams involving anti-particles, which can
be interpreted as an effective three-body force.
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Distribution amplitude
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The distribution amplitude is defined as

φ(x1, x2) =
∫

d2k1⊥d2k2⊥Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥). (7)

It shows the dependence of the wave function on the momentum fractions for the
case when the quarks share the same position.
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Ioffe-time image of the valence state

Alternatively, the proton can be studied in the on the null-plane, in terms of the
transverse position (~bi⊥) and the Ioffe-time x̃i = b−i p+. The image of the proton is
then obtained through the Fourier transform of the proton LF wave function.

For simplicity, we consider here the case~b1⊥ =~b2⊥ =~0⊥, and then one has

Φ(x̃1, x̃2) ≡ Ψ̃3(x̃1,~0⊥, x̃2,~0⊥) =
∫ 1

0
dx1 eix̃1 x1

∫ 1−x1

0
dx2 eix̃2 x2 φ(x1, x2) , (8)
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For x̃2 = 10 and x̃1 >= 10 a rather dramatic decrease of the amplitude is seen.

An exponential damping is seen with respect to the relative distance in Ioffe-time
between the two quarks. We expect this damping to be even more significant if
confinement is incorporated, as its more effective at large distances.
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Electromagnetic form factor

The valence contribution to the Dirac form factor is given by

F1(Q2) =

{
3

∏
i=1

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}
δ

(
1−

3

∑
i=1

xi

)
δ

(
3

∑
i=1

~kf
i⊥

)
×Ψ†

3(x1,~kf
1⊥, ...)Ψ3(x1,~ki

1⊥, ...),

(9)

where Q2 =~q⊥ ·~q⊥ and the magnitudes of the momenta read∣∣∣~kf(i)
i⊥

∣∣∣2 =
∣∣∣~ki⊥ ±

~q⊥
2

xi

∣∣∣2 =~k2
i⊥ +

Q2

4
x2

i ±~ki⊥ ·~q⊥xi (i = 1, 2), (10)

and ∣∣∣~kf(i)
3⊥

∣∣∣2 =
∣∣∣±~q⊥

2
(x3 − 1)−~k1⊥ −~k2⊥

∣∣∣2 =

(1− x3)
2 Q2

4
± (1− x3)~q⊥ · (~k1⊥ +~k2⊥) + (~k1⊥ +~k2⊥)

2.
(11)
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Fit exp. data, Z. Ye et al

a = −1.84/m, m = 317 MeV

a = 3.60/m, m = 362 MeV

a = 5.0/m, m = 343 MeV, mu = 3.0 m

Good agreement with exp. data considering the simplicity of the model, only two
parameters.

However, the scaling laws of the QCD are not built-in, so high-momentum
behavior should be viewed with caution.
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Momentum distributions
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We define the single parton distribution function (PDF) as

f1(x1) =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥|Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2 =

I11 + I22 + I33 + I12 + I13 + I23,
∫ 1

0
dx1f (x1) = F(0) = 1.

(12)

with the Faddeev contributions

Iii =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ2(xi,~ki⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))2

Iij =
2

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ(xi,~ki⊥)Γ(xj,~kj⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))2
; i 6= j.

(13)
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The valence double parton distribution function (DPDF) is given by

D3(x1, x2;~η⊥) =
1

(2π)6

∫
d2k1⊥d2k2⊥

×Ψ†
3(x1,~k1⊥ +~η⊥; x2,~k2⊥ −~η⊥; x3,~k3⊥)Ψ3(x1,~k1⊥; x2,~k2⊥; x3,~k3⊥).

(14)

Fourier transform of D3(x1, x2,~η⊥) in ~η⊥ gives the probability of finding the
quarks 1 and 2 with momentum fractions x1 and x2 at a relative distance~y⊥
within the proton.

D3 = 0 for x1 + x2 > 1, as it should, due to momentum conservation.
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Transverse momentum densities
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The single quark transverse momentum density in the forward limit and
integrated in the longitudinal momentum is associated with the probability
density to find a quark with momentum k⊥.

It can be computed as:

L1(k1⊥) =
k1⊥
(2π)6

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 2π

0
dθ1

∫
d2k2⊥|ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2.

(15)
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The corresponding two-quark one reads

L2(k1⊥, k2⊥) =
k1⊥k2⊥
(2π)6

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 2π

0
dθ1

∫ 2π

0
dθ2

× |ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2.
(16)
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Conclusions

We have, in this work, studied the proton in a simple but fully dynamical valence
LF model based on a zero-range interaction.

The model is based on the concept of a strongly bound interacting diquark.

We have studied the structure of the proton by computing the LF wave function in
its Ioffe-time representation and also momentum distributions.

However, the model is rather crude since e.g. the spin degree of freedom hasn’t
been included yet. But is a first step towards studying the proton directly in
Minkowski space.
Future plans:

Generalization to the infinite set of Fock components (The Faddeev-Bethe-Salpeter
equation solved in PLB 791 (2019) 276)
Implementation of a more realistic interaction (gluon exchange)
Inclusion of spin degree of freedom
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