DEEP LEARNING AS A UNIFIED MODEL-SELLECTION TOOL

DENNY SOMBILLO

RCNP, Osaka University and NIP, University of the Philippines Diliman
DLBS, YI, TS, AH PRD 102 (2020)
DLBS, YI, TS, AH Few-Body Syst. 62, 52 (2021)
In collaboration with:
Yoichi Ikeda
TORU SATO
Atsushi Hosaka

Motivation

Objective:

Deduce the structure of observed resonances using only the experimental data.

Possibilities:

- Compact state
- Molecular
- Virtual
- Cusp, Triangle singularity, etc.

Pole counting argument.

D. Morgan, Nucl.Phys.A 543, 4 (1992)

- Number of poles is related to the nature of resonance.
D. Morgan, M.R. Pennington, Phys.Lett.B 258 (1991)
D. Morgan, Nucl.Phys.A 543, 4 (1992)
D. Morgan, M. R. Pennington, Phys. Rev. D 48 (1993)
- Connected to compositeness

Phys. Lett. B 586 (2004)

Deep learning: alternative analysis tool

Benchmarked on the known nucleon-nucleon bound state Given only the s-wave cross section, the origin of enhancement can be unambiguously identified.

Applied on the pion-nucleon coupled channel scattering
Identify the number of poles in each Riemann sheet to reproduce the amplitude.

Recently applied on $\operatorname{Pc}(4312)$ Interpret the signal with the help of DNN

DL as a unified model selection framework

Select a pole-based model:
How many nearby poles in each Riemann sheet are needed to reproduce the experimental data.

Model space restriction:

Maximum of 4 poles, distributed in any of the unphysical sheets.

Two-channel case: 35 pole-based models
Label S-matrix pole configuration

0	no nearby pole
1	1 pole in $[b t]$
2	2 poles in $[b t]$
\vdots	$\vdots \quad \vdots \quad \vdots \quad \vdots$
32	1 pole in $[b t], 2$ poles in $[b b]$ and 1 pole in $[t b]$
33	1 pole in $[b t], 1$ pole in $[b b]$ and 2 poles in $[t b]$
34	1 pole in $[b t], 1$ pole in $[b b]$ and 1 pole in $[t b]$

It is reasonable to expect that more than one pole-based model can describe the data due to the error bars.

DL as a unified model selection framework

DL approach:

Generate the training dataset
-Use only the general properties of S-matrix

- Include the energy uncertainty

Optimize the parameters of the deep neural network

Input layer:

- Energy points
- Real part of amplitude
- Imaginary part of amplitude

Output layer:

- Pole model 0
- Pole model 1
- Pole model 2
- •...

Dedlov the trained DNN to extract model from the

Training dataset (generation of model space)

General form of S-matrix:

- Hermiticity below the lowest threshold
- Unitarity
- Analyticity

The available experimental data will determine the relevant matrix element.

$$
S_{11}\left(p_{1}, p_{2}\right)=\prod_{m} \frac{D_{m}\left(-p_{1}, p_{2}\right)}{D_{m}\left(p_{1}, p_{2}\right)} \quad S_{22}\left(p_{1}, p_{2}\right)=\prod_{m} \frac{D_{m}\left(p_{1},-p_{2}\right)}{D_{m}\left(p_{1}, p_{2}\right)}
$$

$$
S_{11}=1+2 i T_{11}
$$

$$
S_{11} S_{22}-S_{12}^{2}=\prod_{m} \frac{D_{m}\left(-p_{1},-p_{2}\right)}{D_{m}\left(p_{1}, p_{2}\right)}
$$

Select a convenient representation of $D_{m}\left(p_{1}, p_{2}\right)$ to control the pole and RS.

$$
D_{m}\left(p_{1}, p_{2}\right)=\left[\left(p_{1}-i \beta_{1 m}\right)^{2}-\alpha_{1 m}^{2}\right]+\lambda_{m}\left[\left(p_{2}-i \beta_{2 m}\right)^{2}-\alpha_{2 m}^{2}\right]
$$

All the poles used to form one amplitude are independent of each other. No a priori assumption on how the poles are related in the uncoupled limit.

Training dataset (generation of model space)

Incorporate uncertainty in the energy:

(1) Divide the energy range into B bins

4
(2) Choose a random energy value in each bin

(3) Calculate the amplitude for each random energy value

(4) Label each amplitude according to its pole-configuration

Label	S-matrix pole configuration
0	no nearby pole
1	1 pole in $[b t]$
2	2 poles in $[b t]$
\vdots	$\vdots \quad \vdots \quad \vdots \quad \vdots$
32	1

Optimization of DNN model

Chosen DNN architecture

Layer	Number of nodes	Activation Function
Input	$111+1$	
1st	$200+1$	ReLU
2nd	$200+1$	ReLU
3rd	$200+1$	ReLU
Output	35	Softmax

We adopted the curriculum method to train the DNN using the noisy dataset.

After $\sim 31,000$ epochs the final training and testing accuracies are 76.5% and 80.4%, respectively.

Performance in curriculum training

Noticeable saturation
Can this be improved?

Intrinsic ambiguity in the lineshape

Identical lower channel amplitude.

(c)
(c)

Higher channel amplitude can be distinguished.

Amplitude with one pole in [bt] sheet.

Amplitude with one pole in each unphysical sheet. All poles with the same real and imaginary parts.

The only way to improve the DNN performance is to include the higher (or cross) channel amplitude.

Inference stage: application

- Draw points from each error bar using a Gaussian distribution.
-Construct inference amplitudes from the experimental data using the drawn points.
-Feed the inference amplitudes to the trained DNN.

Interference on $10 \wedge 6$ amplitudes

- 44.6\% 1[bt]-1[bb]-2[tb]
- 34.1\% 1[bt]-1[bb]-1[tb]
- 16.4% 0[bt]-1[bb]-3[tb]
- 04.9\% 0[bt]-1[bb]-2[tb]

Inference stage: application

Interference on 10 ^ 6 amplitudes Using uniform distribution

- $60.3 \% 1[\mathrm{bt}]-1[\mathrm{bb}]-2[\mathrm{tb}]$
- 30.9\% 1[bt]-1[bb]-1[tb]
- 07.5\% 0[bt]-1[bb]-3[tb]
- 01.3\% 0[bt]-1[bb]-2[tb]

Interpretation of results

โิ

The detected [bb] and [bt] poles are the closest RS to the scattering region.

Peak is above the second threshold (ηN). Can only be caused by a [bb] pole

If [bt] pole is close to ηN threshold, the peak should reach the unitarity limit. Thus, [bt] pole is NOT the cause of ηN enhancement.

Can be attributed to the detected [tb] pole.

Summary and Outlook

- We can teach DNN to recognize the pole structure of a given amplitude.
- Deep learning can be used as unified model selection framework.
- No a priori assumptions is made on the detected poles since they are produced independently in the training dataset.

Molecular picture of Pc states
Phys. Rev. Lett. 124 (2020)

Double triangle singularities
Phys. Rev. D. 103 (2021)

- Same data, almost the same quality of fit but two conflicting models.
-Which is a better description of the data?
- Maybe DNN can give an unbiased answer. (Stay tuned!)

Thank you for listening!

